Manikandan V S, George Kesiya, Thirumurugan Arun, Govindaraj T, Harish S, Archana J, Navaneethan M
Functional Materials and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, India; Center of Excellence in Materials and Advanced Technologies (CeMAT), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bhubaneswar 751024, India.
J Colloid Interface Sci. 2025 Jan 15;678(Pt A):549-559. doi: 10.1016/j.jcis.2024.08.098. Epub 2024 Aug 14.
Two-dimensional layered bismuth telluride (BiTe), a prominent topological insulator, has garnered global scientific attention for its unique properties and potential applications in optoelectronics and electrochemical devices. Notably, there is a growing emphasis on improving photon-to-electron conversion efficiency in dye-sensitized solar cells (DSSCs), prompting the exploration of alternatives to noble metal catalysts like platinum (Pt). This study presents the synthesis of BiTe and its hybrid nanostructure with single-wall carbon nanotubes (SWCNT) via a straightforward hydrothermal process. The research unveils a novel application for the BiTe-SWCNT hybrid structure, serving as a counter electrode in platinum-free DSSCs, facilitating the conversion of triiodide (I) to iodide (I) and functioning as an active electrode material in a photodetector (n-BiTe-SWCNT/p-Si). The resulting DSSC employing the BiTe-SWCNT hybrid counter electrode achieves a power conversion efficiency (PCE) of 4.2 %, a photocurrent density of 10.5 mA/cm, a fill factor (FF) of 62 %, and superior charge transfer kinetics compared to pristine BiTe based counter electrode (PCE 2.1 %, FF 34 %). Additionally, a spin coating technique enhances the performance of the n-BiTe-SWCNT/p-Si photodetector, yielding a responsivity of 2.2 AW, detectivity of 1.2 × 10 and enhanced external quantum efficiency. These findings demonstrate that the newly developed BiTe-SWCNT heterostructure enhances interfacial charge transport, electrocatalytic performance in DSSCs, and overall photodetector performance.
二维层状碲化铋(BiTe)作为一种著名的拓扑绝缘体,因其独特的性质以及在光电子学和电化学器件中的潜在应用而受到全球科学界的关注。值得注意的是,人们越来越重视提高染料敏化太阳能电池(DSSC)中的光子 - 电子转换效率,这促使人们探索铂(Pt)等贵金属催化剂的替代品。本研究通过一种简单的水热法展示了BiTe及其与单壁碳纳米管(SWCNT)的混合纳米结构的合成。该研究揭示了BiTe - SWCNT混合结构的一种新应用,即在无铂DSSC中用作对电极,促进三碘化物(I)向碘化物(I)的转化,并在光电探测器(n - BiTe - SWCNT/p - Si)中用作活性电极材料。采用BiTe - SWCNT混合对电极的DSSC实现了4.2%的功率转换效率(PCE)、10.5 mA/cm的光电流密度、62%的填充因子(FF),并且与基于原始BiTe的对电极相比具有优异的电荷转移动力学(PCE 2.1%,FF 34%)。此外,旋涂技术提高了n - BiTe - SWCNT/p - Si光电探测器的性能,产生了2.2 AW的响应度、1.2×10的探测率和增强的外量子效率。这些发现表明,新开发的BiTe - SWCNT异质结构增强了界面电荷传输、DSSC中的电催化性能以及整体光电探测器性能。