School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China.
Bioresour Technol. 2024 Nov;412:131381. doi: 10.1016/j.biortech.2024.131381. Epub 2024 Aug 28.
Microbial electrosynthesis (MES) shows great promise for converting CO into high-value chemicals. However, cathode biofilm erosion by high CO sparging and the unclear role of plankton in MES hinders the continuous improvement of its performance. This study aims to enhance biofilm resistance and improve interactions between bio-cathode and plankton by upgrading waste algal biomass into 3-D porous algal electrode (PAE) with rough surface. Results showed that the acetate synthesis of PAE under 20 mL/min CO sparging (PAE-20) was up to 3330.61 mol/m, 4.63 times that of carbon felt under the same conditions (CF-20). The microbial loading of PAE-20 biofilm was twice that of CF-20. Furthermore, higher cumulative abundance of functional microorganisms was observed in plankton of PAE-20 (55 %), compared to plankton of CF-20 (14 %), and enhanced biocathode-plankton interactions significantly suppressed acetate consumption. Thus, this efficient and sustainable 3-D electrode advances MES technology and offers new perspectives for waste biomass recycling.
微生物电解合成(MES)在将 CO 转化为高价值化学品方面具有广阔的前景。然而,高 CO 鼓泡对阴极生物膜的侵蚀以及 MES 中浮游生物的作用不明确,阻碍了其性能的持续提高。本研究旨在通过将废藻生物质升级为具有粗糙表面的 3-D 多孔藻电极(PAE),来提高生物膜的抗性并改善生物阴极与浮游生物之间的相互作用。结果表明,在 20 mL/min CO 鼓泡下(PAE-20),PAE 的乙酸盐合成量达到 3330.61 mol/m,是相同条件下碳纤维毡(CF-20)的 4.63 倍。PAE-20 生物膜的微生物负载量是 CF-20 的两倍。此外,在 PAE-20 的浮游生物中观察到更高比例的功能微生物(55%),而在 CF-20 的浮游生物中仅为 14%,并且增强的生物阴极-浮游生物相互作用显著抑制了乙酸盐的消耗。因此,这种高效且可持续的 3-D 电极推进了 MES 技术的发展,并为废物生物质回收提供了新的视角。