Suppr超能文献

基于对数优势阳性淋巴结的预测模型能有效预测 III 期结肠癌的预后,并指导术后辅助化疗时间:一项多中心回顾性队列研究。

A log odds of positive lymph nodes-based predictive model effectively forecasts prognosis and guides postoperative adjuvant chemotherapy duration in stage III colon cancer: a multi-center retrospective cohort study.

机构信息

Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicineof Colorectal Surgery, Sun Yat-Sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China.

Medical College, Shaoguan University, Shaoguan, Guangdong, 512005, People's Republic of China.

出版信息

BMC Cancer. 2024 Sep 2;24(1):1088. doi: 10.1186/s12885-024-12875-6.

Abstract

BACKGROUND

The log odds of positive lymph nodes (LODDS) was considered a superior staging system to N stage in colon cancer, yet its value in determining the optimal duration of adjuvant chemotherapy for stage III colon cancer patients has not been evaluated. This study aims to assess the prognostic value of a model that combines LODDS with clinicopathological information for stage III colon cancer patients and aims to stratify these patients using the model, identifying individuals who could benefit from varying durations of adjuvant chemotherapy.

METHOD

A total of 663 consecutive patients diagnosed with stage III colon cancer, who underwent colon tumor resection between November 2007 and June 2020 at Sun Yat-sen University Cancer Center and Longyan First Affiliated Hospital of Fujian Medical University, were enrolled in this study. Survival outcomes were analyzed using Kaplan-Meier, Cox regression. Nomograms were developed to forecast patient DFS, with the Area Under the Curve (AUC) values of time-dependent Receiver Operating Characteristic (timeROC) and calibration plots utilized to assess the accuracy and reliability of the nomograms.

RESULTS

Multivariate analysis revealed that perineural invasion (HR = 1.776, 95% CI: 1.052-3.003, P = 0.032), poor tumor differentiation (HR = 1.638, 95% CI: 1.084-2.475, P = 0.019), and LODDS groupings of 2 and 1 (HR = 1.920, 95% CI: 1.297-2.842, P = 0.001) were independent predictors of disease-free survival (DFS) in the training cohort. Nomograms constructed from LODDS, perineural invasion, and poor tumor differentiation demonstrated robust predictive performance for 3-year and 5-year DFS in both training (3-year AUC = 0.706, 5-year AUC = 0.678) and validation cohorts (3-year AUC = 0.744, 5-year AUC = 0.762). Stratification according to this model showed that patients in the high-risk group derived significant benefit from completing 8 cycles of chemotherapy (training cohort, 82.97% vs 67.17%, P = 0.013; validation cohort, 89.49% vs 63.97%, P = 0.030).

CONCLUSION

The prognostic model, integrating LODDS, pathological differentiation, and neural invasion, demonstrates strong predictive accuracy for stage III colon cancer prognosis. Moreover, stratification via this model offers valuable insights into optimal durations of postoperative adjuvant chemotherapy.

摘要

背景

在结肠癌中,淋巴结阳性对数比(LODDS)被认为是优于 N 分期的分期系统,但它在确定 III 期结肠癌患者辅助化疗最佳持续时间方面的价值尚未得到评估。本研究旨在评估一种结合 LODDS 与临床病理信息的模型在 III 期结肠癌患者中的预后价值,并通过该模型对这些患者进行分层,确定可以从不同持续时间的辅助化疗中获益的个体。

方法

共纳入 2007 年 11 月至 2020 年 6 月期间在中山大学肿瘤防治中心和福建医科大学附属龙岩第一医院接受结肠癌肿瘤切除术的 663 例连续确诊为 III 期结肠癌的患者。使用 Kaplan-Meier、Cox 回归分析生存结局。建立列线图预测患者无病生存期(DFS),采用时间依赖性Receiver Operating Characteristic(timeROC)的曲线下面积(AUC)值和校准图评估列线图的准确性和可靠性。

结果

多因素分析显示,神经周围侵犯(HR=1.776,95%CI:1.052-3.003,P=0.032)、肿瘤分化不良(HR=1.638,95%CI:1.084-2.475,P=0.019)和 LODDS 分组 2 和 1(HR=1.920,95%CI:1.297-2.842,P=0.001)是训练队列中无病生存(DFS)的独立预测因子。基于 LODDS、神经周围侵犯和肿瘤分化不良构建的列线图在训练队列(3 年 AUC=0.706,5 年 AUC=0.678)和验证队列(3 年 AUC=0.744,5 年 AUC=0.762)中对 3 年和 5 年 DFS 均具有良好的预测性能。根据该模型进行分层显示,高危组患者完成 8 个周期化疗获益显著(训练队列,82.97%比 67.17%,P=0.013;验证队列,89.49%比 63.97%,P=0.030)。

结论

该整合 LODDS、病理分化和神经侵犯的预后模型对 III 期结肠癌的预后具有较强的预测准确性。此外,通过该模型进行分层为确定术后辅助化疗的最佳持续时间提供了有价值的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8869/11370012/eaa7a8c43097/12885_2024_12875_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验