Suppr超能文献

用于提高两粒子合并点处近似单电子和双电子密度精度的平帽法。

Plain Capping for Improved Accuracy of Approximate One- and Two-Electron Densities at Two-Particle Coalescence Points.

作者信息

Cioslowski Jerzy, Strasburger Krzysztof

机构信息

Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland.

Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straaae 38, 01187 Dresden, Germany.

出版信息

J Chem Theory Comput. 2024 Sep 3;20(18):7876-83. doi: 10.1021/acs.jctc.4c00533.

Abstract

The values of the one-electron and intracule densities at two-particle coalescence points that enter the expressions for relativistic corrections to energies of Coulombic systems cannot be efficiently computed with sufficient accuracy from approximate wave functions expressed in terms of cuspless basis functions such as the explicitly correlated Gaussians. A new approach to alleviation of this problem, called plain capping, is proposed. Unlike those offered by the previously published formalisms, such as the expectation value identities and integral transforms, the accuracy improvements effected by the plain capping are attained with negligible computational effort and minimum programming. In the case of the on-top two-electron densities, whose accurate computation is particularly costly, the plain capping constitutes the only viable means of error reduction available at present.

摘要

进入库仑系统能量相对论修正表达式的两粒子合并点处的单电子密度和内禀密度值,无法通过用诸如显式相关高斯函数等无尖点基函数表示的近似波函数,以足够的精度有效地计算出来。本文提出了一种缓解该问题的新方法,称为普通封顶法。与先前发表的形式主义方法(如期望值恒等式和积分变换)不同,普通封顶法实现的精度提高只需付出可忽略不计的计算量和最少的编程工作。对于精确计算成本特别高的顶对顶双电子密度情况,普通封顶法是目前唯一可行的减少误差的方法。

相似文献

1
Plain Capping for Improved Accuracy of Approximate One- and Two-Electron Densities at Two-Particle Coalescence Points.
J Chem Theory Comput. 2024 Sep 3;20(18):7876-83. doi: 10.1021/acs.jctc.4c00533.
3
Intracule densities in the strong-interaction limit of density functional theory.
Phys Chem Chem Phys. 2008 Jun 21;10(23):3440-6. doi: 10.1039/b803709b. Epub 2008 Apr 30.
5
Relativistic explicit correlation: coalescence conditions and practical suggestions.
J Chem Phys. 2012 Apr 14;136(14):144117. doi: 10.1063/1.3702631.
8
Electron correlation in Li, He, H and the critical nuclear charge system : energies, densities and Coulomb holes.
R Soc Open Sci. 2019 Jan 9;6(1):181357. doi: 10.1098/rsos.181357. eCollection 2019 Jan.
10
Lower Bounds for Nonrelativistic Atomic Energies.
ACS Phys Chem Au. 2022 Jan 26;2(1):23-37. doi: 10.1021/acsphyschemau.1c00018. Epub 2021 Sep 20.

本文引用的文献

1
Off-diagonal derivative discontinuities in the reduced density matrices of electronic systems.
J Chem Phys. 2020 Oct 21;153(15):154108. doi: 10.1063/5.0023955.
2
Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory.
J Chem Theory Comput. 2017 Jul 11;13(7):3236-3249. doi: 10.1021/acs.jctc.7b00404. Epub 2017 Jun 9.
3
Accurate Electron Densities at Nuclei Using Small Ramp-Gaussian Basis Sets.
J Chem Theory Comput. 2015 Aug 11;11(8):3679-83. doi: 10.1021/acs.jctc.5b00528.
4
Regularizing the molecular potential in electronic structure calculations. I. SCF methods.
J Chem Phys. 2014 Nov 14;141(18):184105. doi: 10.1063/1.4901021.
5
6
Explicitly correlated R12/F12 methods for electronic structure.
Chem Rev. 2012 Jan 11;112(1):75-107. doi: 10.1021/cr200204r. Epub 2011 Dec 16.
7
Electron affinity of 7Li.
J Chem Phys. 2006 Nov 28;125(20):204304. doi: 10.1063/1.2393226.
8
Scheme for adding electron-nucleus cusps to Gaussian orbitals.
J Chem Phys. 2005 Jun 8;122(22):224322. doi: 10.1063/1.1940588.
9
On the acceleration of the convergence of singular operators in Gaussian basis sets.
J Chem Phys. 2005 May 8;122(18):184101. doi: 10.1063/1.1888572.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验