Suppr超能文献

基于暴露-反应的多属性临床效用评分框架,以促进肿瘤药物的最佳剂量选择。

Exposure-Response-Based Multiattribute Clinical Utility Score Framework to Facilitate Optimal Dose Selection for Oncology Drugs.

作者信息

Cheng Yiming, Chu Shuyu, Pu Jie, Chen Min, Hong Kevin, Maciag Paulo, Chan Ivan, Zhu Li, Bello Akintunde, Li Yan

机构信息

Clinical Pharmacology, Pharmacometrics & Bioanalysis, Bristol Myers Squibb, Princeton, NJ.

Global Biometrics and Data Sciences, Bristol Myers Squibb, Princeton, NJ.

出版信息

J Clin Oncol. 2024 Dec 10;42(35):4145-4152. doi: 10.1200/JCO.24.00349. Epub 2024 Sep 3.

Abstract

PURPOSE

The advent of new therapeutic modalities highlighted deficiencies in the traditional maximum tolerated dose approach for oncology drug dose selection and prompted the Food and Drug Administration (FDA)'s initiative, which suggests that sponsors take a holistic approach, including efficacy, safety, and pharmacokinetic (PK) and pharmacodynamic data, in conjunction with integrated exposure-response (ER) analyses. However, this method comes with an inherent challenge of the collation of the multisource data. To address this issue, an ER-based clinical utility score (CUS) framework, combining benefit and risk into a single measurement, was developed.

METHODS

Model-predicted outcomes for each clinically relevant end point, informed by ER modeling, are converted to a CUS using a user-defined utility function. Thereafter, individual CUS is integrated into a single score with user-defined weighting for each end point. The user-defined weighting feature allows the user to incorporate expert knowledge/understanding into weighing the product's benefit versus risk profile.

RESULTS

To validate the framework, data were leveraged from over 50 oncology programs from 2019 to 2023 on the basis of FDA new drug application/biologics license application review packages and/or related literature studies. Five representative cases were selected for in-depth evaluation. Results showed that the optimal benefit-risk ratio (highest CUS) was consistently observed at PK exposures synonymous with recommended doses. A recurring theme across cases was a greater emphasis on safety over efficacy in oncology drug dose determination.

CONCLUSION

The ER-based CUS framework offers a strategic tool to navigate the complexities of dose selection in oncology programs. It serves as a pillar to the importance of integrative data analysis, aligning with the vision of , and demonstrates its potential in guiding dose optimization by balancing therapeutic benefits against risk.

摘要

目的

新治疗模式的出现凸显了肿瘤药物剂量选择传统最大耐受剂量方法的不足,并促使美国食品药品监督管理局(FDA)发起倡议,建议申办者采用整体方法,包括疗效、安全性、药代动力学(PK)和药效学数据,并结合综合暴露-反应(ER)分析。然而,这种方法存在多源数据整理的固有挑战。为解决这一问题,开发了一种基于ER的临床效用评分(CUS)框架,将获益和风险整合为单一测量指标。

方法

通过ER建模得出的每个临床相关终点的模型预测结果,使用用户定义的效用函数转换为CUS。此后,将个体CUS整合为一个单一分数,并为每个终点赋予用户定义的权重。用户定义的权重功能允许用户将专家知识/理解纳入权衡产品的获益与风险概况。

结果

为验证该框架,基于FDA新药申请/生物制品许可申请审评包和/或相关文献研究,利用了2019年至2023年50多个肿瘤项目的数据。选择了五个代表性案例进行深入评估。结果表明,在与推荐剂量同义的PK暴露水平下,始终观察到最佳获益-风险比(最高CUS)。各案例中反复出现的一个主题是,在肿瘤药物剂量确定中,安全性比疗效更受重视。

结论

基于ER的CUS框架为应对肿瘤项目剂量选择的复杂性提供了一种战略工具。它是综合数据分析重要性的支柱,符合[此处缺失相关愿景内容]的愿景,并展示了其在通过平衡治疗获益与风险来指导剂量优化方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验