Schildcrout Ryan, Smith Kirk, Bhowmick Rupa, Menon Suraj, Kapadia Minali, Kurtz Emily, Coffeen-Vandeven Anya, Chandrasekaran Sriram
bioRxiv. 2024 Aug 19:2024.08.17.608400. doi: 10.1101/2024.08.17.608400.
The complexity and incompleteness of metabolic-regulatory networks make it challenging to predict metabolomes from other omics. Using machine learning, we predicted metabolomic variation across ~1000 different cancer cell lines from matched oct-omics data: genomics, epigenomics (histone post-translational modifications (PTMs) and DNA-methylation), transcriptomics, RNA splicing, miRNA-omics, proteomics, and phosphoproteomics. Overall, the metabolome is tightly associated with the transcriptome, while miRNAs, phosphoproteins and histone PTMs have the highest metabolic information per feature. Metabolites in peripheral metabolism are predictable via levels of corresponding enzymes, while those in central metabolism require combinatorial predictors in signaling and redox pathways, and may not reflect corresponding pathway expression. We reconstruct multiomic interaction subnetworks for highly predictable metabolites, and YAP1 signaling emerged as a top global predictor across 4 omic layers. We prioritize predictive multiomic features for single-cell and spatial metabolomics assays. Top predictors were enriched for synthetic-lethal interactions and synergistic combination therapies that target compensatory metabolic modulators.
代谢调控网络的复杂性和不完整性使得从其他组学预测代谢组具有挑战性。我们利用机器学习,从匹配的八组学数据(基因组学、表观基因组学(组蛋白翻译后修饰(PTM)和DNA甲基化)、转录组学、RNA剪接、miRNA组学、蛋白质组学和磷酸蛋白质组学)中预测了约1000种不同癌细胞系的代谢组变化。总体而言,代谢组与转录组紧密相关,而miRNA、磷酸化蛋白和组蛋白PTM在每个特征中具有最高的代谢信息。外周代谢中的代谢物可通过相应酶的水平进行预测,而中心代谢中的代谢物则需要信号传导和氧化还原途径中的组合预测因子,且可能无法反映相应途径的表达。我们为高度可预测的代谢物重建了多组学相互作用子网,YAP1信号通路成为跨4个组学层的顶级全局预测因子。我们为单细胞和空间代谢组学分析确定了预测性多组学特征的优先级。顶级预测因子在针对补偿性代谢调节剂的合成致死相互作用和协同联合疗法中富集。