Yosofvand Mohammad, Edmiston Sharon N, Smithy James W, Peng Xiyu, Kostrzewa Caroline E, Lin Bridget, Ehrich Fiona, Reiner Allison, Miedema Jayson, Moy Andrea P, Orlow Irene, Postow Michael A, Panageas Katherine, Seshan Venkatraman E, Callahan Margaret K, Thomas Nancy E, Shen Ronglai
bioRxiv. 2024 Aug 19:2024.08.16.608247. doi: 10.1101/2024.08.16.608247.
The multiplexed immunofluorescence (mIF) platform enables biomarker discovery through the simultaneous detection of multiple markers on a single tissue slide, offering detailed insights into intratumor heterogeneity and the tumor-immune microenvironment at spatially resolved single cell resolution. However, current mIF image analyses are labor-intensive, requiring specialized pathology expertise which limits their scalability and clinical application. To address this challenge, we developed CellGate, a deep-learning (DL) computational pipeline that provides streamlined, end-to-end whole-slide mIF image analysis including nuclei detection, cell segmentation, cell classification, and combined immuno-phenotyping across stacked images. The model was trained on over 750,000 single cell images from 34 melanomas in a retrospective cohort of patients using whole tissue sections stained for CD3, CD8, CD68, CK-SOX10, PD-1, PD-L1, and FOXP3 with manual gating and extensive pathology review. When tested on new whole mIF slides, the model demonstrated high precision-recall AUC. Further validation on whole-slide mIF images of 9 primary melanomas from an independent cohort confirmed that CellGate can reproduce expert pathology analysis with high accuracy. We show that spatial immuno-phenotyping results using CellGate provide deep insights into the immune cell topography and differences in T cell functional states and interactions with tumor cells in patients with distinct histopathology and clinical characteristics. This pipeline offers a fully automated and parallelizable computing process with substantially improved consistency for cell type classification across images, potentially enabling high throughput whole-slide mIF tissue image analysis for large-scale clinical and research applications.
多重免疫荧光(mIF)平台能够通过在单个组织切片上同时检测多个标志物来发现生物标志物,以空间分辨的单细胞分辨率深入了解肿瘤内异质性和肿瘤免疫微环境。然而,目前的mIF图像分析需要大量人力,需要专业的病理学专业知识,这限制了它们的可扩展性和临床应用。为应对这一挑战,我们开发了CellGate,这是一种深度学习(DL)计算流程,可提供简化的、端到端的全切片mIF图像分析,包括细胞核检测、细胞分割、细胞分类以及跨堆叠图像的联合免疫表型分析。该模型在回顾性患者队列中,使用经CD3、CD8、CD68、CK-SOX10、PD-1、PD-L1和FOXP3染色的全组织切片,通过手动设门控和广泛的病理学审查,对来自34例黑色素瘤的75万多张单细胞图像进行了训练。在新的全mIF切片上进行测试时,该模型表现出高精度召回率曲线下面积。对来自独立队列的9例原发性黑色素瘤的全切片mIF图像进行的进一步验证证实,CellGate可以高精度地重现专家病理学分析。我们表明,使用CellGate进行的空间免疫表型分析结果能够深入了解具有不同组织病理学和临床特征的患者的免疫细胞拓扑结构、T细胞功能状态差异以及与肿瘤细胞的相互作用。该流程提供了一个完全自动化且可并行化的计算过程,大幅提高了跨图像细胞类型分类的一致性,有可能实现用于大规模临床和研究应用的高通量全切片mIF组织图像分析。