Erpenbeck A, Blommel T, Zhang L, Lin W-T, Cohen G, Gull E
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.
The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel.
J Chem Phys. 2024 Sep 7;161(9). doi: 10.1063/5.0226253.
A precise dynamical characterization of quantum impurity models with multiple interacting orbitals is challenging. In quantum Monte Carlo methods, this is embodied by sign problems. A dynamical sign problem makes it exponentially difficult to simulate long times. A multi-orbital sign problem generally results in a prohibitive computational cost for systems with multiple impurity degrees of freedom even in static equilibrium calculations. Here, we present a numerically exact inchworm method that simultaneously alleviates both sign problems, enabling simulation of multi-orbital systems directly in the equilibrium or nonequilibrium steady-state. The method combines ideas from the recently developed steady-state inchworm Monte Carlo framework [Erpenbeck et al., Phys. Rev. Lett. 130, 186301 (2023)] with other ideas from the equilibrium multi-orbital inchworm algorithm [Eidelstein et al., Phys. Rev. Lett. 124, 206405 (2020)]. We verify our method by comparison with analytical limits and numerical results from previous methods.
对具有多个相互作用轨道的量子杂质模型进行精确的动力学表征具有挑战性。在量子蒙特卡罗方法中,这表现为符号问题。动力学符号问题使得长时间模拟变得指数级困难。即使在静态平衡计算中,多轨道符号问题通常也会导致具有多个杂质自由度的系统产生高昂的计算成本。在此,我们提出一种数值精确的尺蠖方法,该方法可同时缓解这两个符号问题,从而能够直接在平衡态或非平衡稳态下模拟多轨道系统。该方法将最近开发的稳态尺蠖蒙特卡罗框架 [Erpenbeck等人,《物理评论快报》130, 186301 (2023)] 中的思想与平衡多轨道尺蠖算法 [Eidelstein等人,《物理评论快报》124, 206405 (2020)] 中的其他思想相结合。我们通过与解析极限以及先前方法的数值结果进行比较来验证我们的方法。