Suppr超能文献

利用 RNA 表面形貌预测 RNA 结构中的小分子结合核苷酸。

Predicting Small Molecule Binding Nucleotides in RNA Structures Using RNA Surface Topography.

机构信息

Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China.

出版信息

J Chem Inf Model. 2024 Sep 23;64(18):6979-6992. doi: 10.1021/acs.jcim.4c01264. Epub 2024 Sep 4.

Abstract

RNA small molecule interactions play a crucial role in drug discovery and inhibitor design. Identifying RNA small molecule binding nucleotides is essential and requires methods that exhibit a high predictive ability to facilitate drug discovery and inhibitor design. Existing methods can predict the binding nucleotides of simple RNA structures, but it is hard to predict binding nucleotides in complex RNA structures with junctions. To address this limitation, we developed a new deep learning model based on spatial correlation, ZHmolReSTasite, which can accurately predict binding nucleotides of small and large RNA with junctions. We utilize RNA surface topography to consider the spatial correlation, characterizing nucleotides from sequence and tertiary structures to learn a high-level representation. Our method outperforms existing methods for benchmark test sets composed of simple RNA structures, achieving precision values of 72.9% on TE18 and 76.7% on RB9 test sets. For a challenging test set composed of RNA structures with junctions, our method outperforms the second best method by 11.6% in precision. Moreover, ZHmolReSTasite demonstrates robustness regarding the predicted RNA structures. In summary, ZHmolReSTasite successfully incorporates spatial correlation, outperforms previous methods on small and large RNA structures using RNA surface topography, and can provide valuable insights into RNA small molecule prediction and accelerate RNA inhibitor design.

摘要

RNA 小分子相互作用在药物发现和抑制剂设计中起着至关重要的作用。确定 RNA 小分子结合核苷酸是至关重要的,需要具有高预测能力的方法来促进药物发现和抑制剂设计。现有的方法可以预测简单 RNA 结构的结合核苷酸,但很难预测具有连接点的复杂 RNA 结构中的结合核苷酸。为了解决这一限制,我们开发了一种新的基于空间相关性的深度学习模型 ZHmolReSTasite,它可以准确预测具有连接点的小 RNA 和大 RNA 的结合核苷酸。我们利用 RNA 表面形貌来考虑空间相关性,从序列和三级结构特征化核苷酸,以学习高级表示。我们的方法在由简单 RNA 结构组成的基准测试集上优于现有的方法,在 TE18 和 RB9 测试集上的精度值分别达到 72.9%和 76.7%。对于由具有连接点的 RNA 结构组成的具有挑战性的测试集,我们的方法在精度上比第二好的方法高出 11.6%。此外,ZHmolReSTasite 对预测的 RNA 结构具有稳健性。总之,ZHmolReSTasite 成功地整合了空间相关性,利用 RNA 表面形貌在小 RNA 和大 RNA 结构上优于以前的方法,可以为 RNA 小分子预测提供有价值的见解,并加速 RNA 抑制剂的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验