Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China.
Department of Mechanical Engineering, National University of Singapore, 117574, Singapore.
Biosens Bioelectron. 2024 Dec 15;266:116713. doi: 10.1016/j.bios.2024.116713. Epub 2024 Aug 30.
Textile sweat sensors possess immense potential for non-invasive health monitoring. Rapid in-situ sweat capture and prevention of its evaporation are crucial for accurate and stable real-time monitoring. Herein, we introduce a unidirectional, pump-free microfluidic sweat management system to tackle this challenge. A nanofiber sheath layer on micrometer-scale sensing filaments enables this pumpless microfluidic design. Utilizing the capillary effect of the nanofibers allows for the swift capture of sweat, while the differential configuration of the hydrophilic and hydrophobic properties of the sheath and core yarns prevents sweat evaporation. The Laplace pressure difference between the cross-scale fibers facilitates the management system to ultimately expulse sweat. This results in microfluidic control of sweat without the need for external forces, resulting in rapid (<5 s), sensitive (19.8 nA μM), and stable (with signal noise and drift suppression) sweat detection. This yarn sensor can be easily integrated into various fabrics, enabling the creation of health monitoring smart garments. The garments maintain good monitoring performance even after 20 washes. This work provides a solution for designing smart yarns for high-precision, stable, and non-invasive health monitoring.
纺织汗液传感器在非侵入式健康监测方面具有巨大的潜力。快速的原位汗液采集和防止其蒸发对于准确和稳定的实时监测至关重要。在此,我们介绍了一种单向、无泵的微流体汗液管理系统来应对这一挑战。在微米级的传感纤维上涂覆纳米纤维鞘层,实现了这种无泵微流体设计。利用纳米纤维的毛细作用可以快速捕获汗液,而鞘层和芯纱的亲水性和疏水性的差分配置防止了汗液蒸发。跨尺度纤维之间的拉普拉斯压力差有助于管理系统最终排出汗液。这使得微流体可以对汗液进行控制,而无需外部力量,从而实现了快速(<5s)、灵敏(19.8nAμM)和稳定(信号噪声和漂移抑制)的汗液检测。这种纱线传感器可以很容易地集成到各种织物中,从而制造出用于健康监测的智能服装。这些服装即使经过 20 次洗涤后仍能保持良好的监测性能。这项工作为设计高精度、稳定和非侵入式健康监测的智能纱线提供了一种解决方案。