Suppr超能文献

用于时间分辨燃烧气体诊断的拉曼光谱学。

Raman Spectroscopy for Temporally Resolved Combustion Gas Diagnostics.

作者信息

Dal Moro Riccardo, Melison Fabio, Cocola Lorenzo, Poletto Luca

机构信息

National Research Council-Institute for Photonics and Nanotechnologies (CNR-IFN), Padova, Italy.

University of Padova, CISAS "G. Colombo", Padova, Italy.

出版信息

Appl Spectrosc. 2024 Dec;78(12):1263-1269. doi: 10.1177/00037028241277575. Epub 2024 Sep 5.

Abstract

A novel approach for cost-effective and temporally resolved in-line combustion gas diagnostics based on spontaneous Stokes Raman spectroscopy is presented in this paper. The proposed instrument uses a multipass configuration designed to increase the scattering generation, giving information about gas species concentrations, including H and N that are not commonly available from analysis with absorption spectroscopy techniques. The system performs calibrated analysis providing both qualitative and quantitative information about the gas composition. Depending on the application, the device can work with spectra integration time from 0.15 s up to 10 s, with a Raman spectrum ranging from the H rotational peak at Raman shift of 587 cm up to the H vibrational peak at 4156 cm, covering all the Raman emissions of major combustion species. The device response was characterized by a working pressure from 0.7 to 7.5 bar. The instrument prototype has been made completely transportable, designed to operate using a gas sampling system, and ready to be operated in relevant industrial in-line environments.

摘要

本文介绍了一种基于自发斯托克斯拉曼光谱的具有成本效益且能进行时间分辨的在线燃烧气体诊断新方法。所提出的仪器采用多程配置,旨在增加散射产生,提供有关气体成分浓度的信息,包括通过吸收光谱技术分析通常无法获得的氢和氮。该系统进行校准分析,提供有关气体成分的定性和定量信息。根据应用情况,该设备可在光谱积分时间从0.15秒到10秒的范围内工作,拉曼光谱范围从拉曼位移587厘米处的氢转动峰到4156厘米处的氢振动峰,涵盖了主要燃烧物种的所有拉曼发射。该设备的响应特性为工作压力范围从0.7到7.5巴。仪器原型已完全可运输,设计为使用气体采样系统运行,并准备好在相关工业在线环境中运行。

相似文献

1
Raman Spectroscopy for Temporally Resolved Combustion Gas Diagnostics.
Appl Spectrosc. 2024 Dec;78(12):1263-1269. doi: 10.1177/00037028241277575. Epub 2024 Sep 5.
2
Pure-rotational H thermometry by ultrabroadband coherent anti-Stokes Raman spectroscopy.
J Chem Phys. 2017 Jun 14;146(22):224202. doi: 10.1063/1.4984083.
3
Pressure broadening in Raman spectra of CH-N, CH-CO, and CH-CH gas mixtures.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Apr 15;291:122396. doi: 10.1016/j.saa.2023.122396. Epub 2023 Jan 20.
4
Combustion in the future: The importance of chemistry.
Proc Combust Inst. 2020 Sep 25. doi: 10.1016/j.proci.2020.06.375.
6
Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces.
Appl Opt. 1999 Mar 20;38(9):1467-75. doi: 10.1364/ao.38.001467.
9
Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.
Appl Spectrosc. 2017 Mar;71(3):341-366. doi: 10.1177/0003702817690161. Epub 2017 Feb 3.

引用本文的文献

1
Raman Gas Sensor for Hydrogen Detection via Non-Dispersive and Dispersive Approaches.
Sensors (Basel). 2025 Jul 5;25(13):4190. doi: 10.3390/s25134190.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验