Suppr超能文献

硅酮嵌入式 3D 打印中的细丝干扰和融合。

Filament Disturbance and Fusion during Embedded 3D Printing of Silicones.

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.

出版信息

ACS Biomater Sci Eng. 2024 Oct 14;10(10):6690-6710. doi: 10.1021/acsbiomaterials.4c01014. Epub 2024 Sep 5.

Abstract

Embedded 3D printing (EMB3D) is an additive manufacturing technique that enables complex fabrication of soft materials including tissues and silicones. In EMB3D, a nozzle writes continuous filaments into a support bath consisting of a yield stress fluid. Lack of fusion defects between filaments can occur because the nozzle pushes support fluid into existing filaments, preventing coalescence. Interfacial tension was previously proposed as a tool to drive interfilament fusion. However, interfacial tension can also drive rupture and shrinkage of printed filaments. Here, we evaluate the efficacy of interfacial tension as a tool to control defects in EMB3D. Using polydimethylsiloxane (PDMS)-based inks with varying amounts of fumed silica and surfactant, printed into Laponite in water supports, we evaluate the effect of rheology, interfacial tension, print speeds, and interfilament spacings on defects. We print pairs of parallel filaments at varying orientations in the bath and use digital image analysis to quantify shrinkage, rupture, fusion, and positioning defects. By comparing disturbed filaments to printed pairs of filaments, we disentangle the effects of nozzle movement and filament extrusion. Critically, we find that capillary instabilities and interfilament fusion scale with the balance between support rheology and interfacial tension. Less viscous supports and higher interfacial tensions lead to more shrinkage and rupture at all points in the printing process, from relaxation after writing, to disturbance of the line, to writing of a second line. It is necessary to overextrude material to achieve interfilament fusion, particularly at high support viscosities and low interfacial tensions. Finally, fusion quality varies with printing orientation, and writing neighboring filaments causes displacement of existing structures. As such, specialized slicers are needed for EMB3D that consider the tighter spacings and orientation-dependent spacings necessary to achieve precise control over printed shapes.

摘要

嵌入式 3D 打印(EMB3D)是一种增材制造技术,能够制造复杂的软材料结构,包括组织和硅树脂。在 EMB3D 中,喷嘴将连续的细丝写入由屈服应力流体组成的支撑浴中。由于喷嘴将支撑流体推到现有细丝中,从而阻止了融合,因此细丝之间可能会出现融合缺陷。界面张力之前被提议作为驱动细丝间融合的工具。但是,界面张力也会导致打印细丝的断裂和收缩。在这里,我们评估界面张力作为控制 EMB3D 中缺陷的工具的功效。使用具有不同量的气相二氧化硅和表面活性剂的聚二甲基硅氧烷(PDMS)基油墨,在水中的 Laponite 支撑下进行打印,我们评估了流变学、界面张力、打印速度和细丝间间距对缺陷的影响。我们以不同的方向在浴中打印一对平行细丝,并使用数字图像分析来量化收缩、断裂、融合和定位缺陷。通过将受干扰的细丝与打印的细丝对进行比较,我们可以理清喷嘴运动和细丝挤出的影响。至关重要的是,我们发现支撑流变学和界面张力之间的平衡与毛细管不稳定性和细丝间融合的程度相关。较低粘度的支撑和较高的界面张力会导致在打印过程中的所有点都发生更多的收缩和断裂,从写入后的松弛、线的干扰到写入第二条线。必须过度挤出材料才能实现细丝间融合,尤其是在高支撑粘度和低界面张力的情况下。最后,融合质量随打印方向而变化,相邻细丝的写入会导致现有结构的位移。因此,需要专门的切片机来进行 EMB3D,以考虑到实现对打印形状的精确控制所需的更紧密的间距和方向相关的间距。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验