Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea.
PLoS One. 2024 Sep 5;19(9):e0307499. doi: 10.1371/journal.pone.0307499. eCollection 2024.
Fibroblast growth factor 2 (FGF2) is an attractive biomaterial for pharmaceuticals and functional cosmetics. To improve the thermo-stability of FGF2, we designed two mutants harboring four-point mutations: FGF2-M1 (D28E/C78L/C96I/S137P) and FGF2-M2 (D28E/C78I/C96I/S137P) through bioinformatics, molecular thermodynamics, and molecular modeling. The D28E mutation reduced fragmentation of the FGF2 wild type during preparation, and the substitution of a whale-specific amino acid, S137P, enhanced the thermal stability of FGF2. Surface-exposed cysteines that participate in oligomerization through intermolecular disulfide bond formation were substituted with hydrophobic residues (C78L/C78I and C96I) using the in silico method. High-resolution crystal structures revealed at the atomic level that the introduction of mutations stabilizes each local region by forming more favorable interactions with neighboring residues. In particular, P137 forms CH-π interactions with the side chain indole ring of W123, which seems to stabilize a β-hairpin structure, containing a heparin-binding site of FGF2. Compared to the wild type, both FGF2-M1 and FGF2-M2 maintained greater solubility after a week at 45 °C, with their Tm values rising by ~ 5 °C. Furthermore, the duration for FGF2-M1 and FGF2-M2 to reach 50% residual activity at 45 °C extended to 8.8- and 8.2-fold longer, respectively, than that of the wild type. Interestingly, the hydrophobic substitution of surface-exposed cysteine in both FGF2 mutants makes them more resistant to proteolytic cleavage by trypsin, subtilisin, proteinase K, and actinase than the wild type and the Cys → Ser substitution. The hydrophobic replacements can influence protease resistance as well as oligomerization and thermal stability. It is notable that hydrophobic substitutions of surface-exposed cysteines, as well as D28E and S137P of the FGF2 mutants, were designed through various approaches with structural implications. Therefore, the engineering strategies and structural insights adopted in this study could be applied to improve the stability of other proteins.
成纤维细胞生长因子 2(FGF2)是一种有吸引力的生物医药材料,适用于药品和功能性化妆品。为了提高 FGF2 的热稳定性,我们通过生物信息学、分子热力学和分子建模设计了两个突变体,突变体含有四个点突变:FGF2-M1(D28E/C78L/C96I/S137P)和 FGF2-M2(D28E/C78I/C96I/S137P)。D28E 突变减少了 FGF2 野生型在制备过程中的碎片化,而替换鲸鱼特有的氨基酸 S137P 增强了 FGF2 的热稳定性。通过分子间二硫键形成参与寡聚化的表面暴露半胱氨酸被疏水性残基(C78L/C78I 和 C96I)取代,这是一种通过计算方法进行的。高分辨率晶体结构在原子水平上揭示,突变的引入通过与相邻残基形成更有利的相互作用稳定了每个局部区域。特别是,P137 与 W123 的侧链吲哚环形成 CH-π 相互作用,这似乎稳定了包含 FGF2 肝素结合位点的 β-发夹结构。与野生型相比,在 45°C 下放置一周后,FGF2-M1 和 FGF2-M2 的溶解度都保持更高,其 Tm 值上升了约 5°C。此外,FGF2-M1 和 FGF2-M2 达到 50%残留活性所需的时间分别延长了 8.8 倍和 8.2 倍,而野生型的时间则延长了 50%。有趣的是,FGF2 两种突变体表面暴露半胱氨酸的疏水性取代使它们对胰蛋白酶、枯草杆菌蛋白酶、蛋白酶 K 和肌动蛋白酶的蛋白水解切割比野生型和 Cys→Ser 取代更具抗性。疏水性取代会影响蛋白酶抗性以及寡聚化和热稳定性。值得注意的是,FGF2 突变体表面暴露半胱氨酸的疏水性取代以及 D28E 和 S137P 的设计是通过具有结构意义的各种方法进行的。因此,本研究中采用的工程策略和结构见解可以应用于提高其他蛋白质的稳定性。