Department of Refractory Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan.
Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, NIH, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2404175121. doi: 10.1073/pnas.2404175121. Epub 2024 Sep 5.
We generated SARS-CoV-2 variants resistant to three SARS-CoV-2 main protease (M) inhibitors (nirmatrelvir, TKB245, and 5h), by propagating the ancestral SARS-CoV-2 in VeroE6 cells with increasing concentrations of each inhibitor and examined their structural and virologic profiles. A predominant E166V-carrying variant (SARS-CoV-2), which emerged when passaged with nirmatrelvir and TKB245, proved to be resistant to the two inhibitors. A recombinant SARS-CoV-2 was resistant to nirmatrelvir and TKB245, but sensitive to 5h. X-ray structural study showed that the dimerization of M was severely hindered by E166V substitution due to the disruption of the presumed dimerization-initiating Ser1'-Glu166 interactions. TKB245 stayed bound to M, whereas nirmatrelvir failed. Native mass spectrometry confirmed that nirmatrelvir and TKB245 promoted the dimerization of M, and compromised the enzymatic activity; the Ki values of recombinant M for nirmatrelvir and TKB245 were 117±3 and 17.1±1.9 µM, respectively, indicating that TKB245 has a greater (by a factor of 6.8) binding affinity to M than nirmatrelvir. SARS-CoV-2 selected with 5h acquired A191T substitution in M (SARS-CoV-2) and better replicated in the presence of 5h, than SARS-CoV-2. However, no significant enzymatic or structural changes in M were observed. The replicability of SARS-CoV-2 proved to be compromised compared to SARS-CoV-2 but predominated over SARS-CoV-2 in the presence of nirmatrelvir. The replicability of SARS-CoV-2 surpassed that of SARS-CoV-2 in the absence of 5h, confirming that A191T confers enhanced viral fitness. The present data should shed light on the understanding of the mechanism of SARS-CoV-2's drug resistance acquisition and the development of resistance-repellant COVID-19 therapeutics.
我们通过在 VeroE6 细胞中用越来越高的浓度培养每种抑制剂,生成了对三种 SARS-CoV-2 主要蛋白酶 (M) 抑制剂(利托那韦、TKB245 和 5h)具有抗性的 SARS-CoV-2 变体,并检测了它们的结构和病毒学特征。当用利托那韦和 TKB245 传代时,出现了一种主要携带 E166V 的变体(SARS-CoV-2),该变体对这两种抑制剂具有抗性。重组 SARS-CoV-2 对利托那韦和 TKB245 具有抗性,但对 5h 敏感。X 射线结构研究表明,由于假定的二聚化起始 Ser1'-Glu166 相互作用的破坏,M 的二聚化严重受阻,导致 E166V 取代。TKB245 仍与 M 结合,但利托那韦不行。天然质谱证实,利托那韦和 TKB245 促进了 M 的二聚化,并损害了其酶活性;重组 M 对利托那韦和 TKB245 的 Ki 值分别为 117±3 和 17.1±1.9 µM,表明 TKB245 对 M 的结合亲和力比利托那韦大(相差 6.8 倍)。用 5h 选择的 SARS-CoV-2 在 M 中获得了 A191T 取代(SARS-CoV-2),并且在存在 5h 的情况下更好地复制,但比 SARS-CoV-2 差。然而,在 M 中未观察到明显的酶或结构变化。与 SARS-CoV-2 相比,SARS-CoV-2 的复制能力受到损害,但在利托那韦存在下占优势。在没有 5h 的情况下,SARS-CoV-2 的复制能力超过了 SARS-CoV-2,证实了 A191T 赋予了病毒更高的适应性。本研究数据有助于理解 SARS-CoV-2 获得耐药性的机制和开发抗耐药性的 COVID-19 治疗方法。