School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3000, Australia.
Department of Chemistry and Biochemistry, The University of Mississippi, University, MS, 38677, USA.
Chemosphere. 2024 Sep;364:143252. doi: 10.1016/j.chemosphere.2024.143252. Epub 2024 Sep 3.
Ionic liquids (ILs) have found diverse applications in research and industry. Biocompatible ILs, a subset considered less toxic than traditional ILs, have expanded their applications into biomedical fields. However, there is limited understanding of the toxicity profiles, safe concentrations, and underlying factors driving their toxicity. In this study, we investigated the cytotoxicity of 13 choline-based ILs using four different cell lines: Human dermal fibroblasts (HDF), epidermoid carcinoma cells (A431), cervical cancer cells (HeLa), and gastric cancer cells (AGS). Additionally, we explored the haemolytic activity of these ILs. Our findings showed that the cytotoxic and haemolytic activities of ILs can be attributed to the hydrophobicity of the anions and the pH of the IL solutions. Furthermore, utilising quartz crystal microbalance with dissipation (QCM-D), we delved into the interaction of selected ILs, including choline acetate [Cho][Ac] and choline geranate [Cho][Ge], with model cell membranes composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The QCM-D data showed that ILs with higher toxicities exhibited more pronounced interactions with membranes. Increased variations in frequency and dissipation reflected substantial changes in membrane fluidity and mass following the addition of the more toxic ILs. Furthermore, total internal reflection fluorescence microscopy study revealed that [Cho][Ac] could cause lipid rearrangements and pore formation in the membrane, while [Cho][Ge] disrupted the bilayer packing. This study advances our understanding of the cellular toxicities associated with choline-based ILs and provides valuable insights into their mechanisms of action concerning IL-membrane interactions. These findings have significant implications for the safe and informed utilisation of biocompatible ILs in the realm of drug delivery and biotechnology.
离子液体(ILs)在研究和工业中有着广泛的应用。生物相容性 ILs 是毒性比传统 ILs 低的子集,已将其应用扩展到生物医学领域。然而,对于它们的毒性特征、安全浓度以及导致毒性的潜在因素的了解有限。在这项研究中,我们使用四种不同的细胞系(人真皮成纤维细胞(HDF)、表皮癌细胞(A431)、宫颈癌细胞(HeLa)和胃癌细胞(AGS))研究了 13 种胆碱基 ILs 的细胞毒性。此外,我们还研究了这些 ILs 的溶血活性。我们的研究结果表明,ILs 的细胞毒性和溶血活性可归因于阴离子的疏水性和 IL 溶液的 pH 值。此外,我们利用石英晶体微天平(QCM-D)深入研究了包括胆碱乙酸盐[Cho][Ac]和胆碱格尔酸盐[Cho][Ge]在内的选定 IL 与由 1,2-二油酰基-sn-甘油-3-磷酸胆碱(DOPC)组成的模型细胞膜的相互作用。QCM-D 数据表明,毒性较高的 ILs 与膜的相互作用更为明显。频率和耗散的增加变化反映了在添加毒性更高的 IL 后,膜流动性和质量发生了显著变化。此外,全内反射荧光显微镜研究表明,[Cho][Ac]可导致膜中脂质重排和孔形成,而[Cho][Ge]破坏了双层堆积。这项研究增进了我们对胆碱基 ILs 相关细胞毒性的理解,并深入了解了它们与 IL-膜相互作用相关的作用机制。这些发现对安全和明智地在药物输送和生物技术领域中使用生物相容性 ILs 具有重要意义。
Chemosphere. 2013-11-21
Adv Healthc Mater. 2025-8