Abbott Jamie A, Wen Han, Liu Beiying, Gupta Sheila S, Iacobucci Gary J, Zheng Wenjun, Popescu Gabriela K
Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA.
Department of Physics, College of Biological Sciences, Buffalo, NY, 14260, USA.
Mol Psychiatry. 2025 Mar;30(3):1009-1018. doi: 10.1038/s41380-024-02729-9. Epub 2024 Sep 5.
Ketamine, a general anesthetic, has rapid and sustained antidepressant effects when administered at lower doses. Anesthetic levels of ketamine reduce excitatory transmission by binding deep into the pore of NMDA receptors where it blocks current influx. In contrast, the molecular targets responsible for antidepressant levels of ketamine remain controversial. We used electrophysiology, structure-based mutagenesis, and molecular and kinetic modeling to investigate the effects of ketamine on NMDA receptors across an extended range of concentrations. We report functional and structural evidence that, at nanomolar concentrations, ketamine interacts with membrane-accessible hydrophobic sites on NMDA receptors, which are distinct from the established pore-blocking site. These interactions stabilize receptors in pre-open states and produce an incomplete, voltage- and pH-dependent reduction in receptor gating. Notably, this allosteric inhibitory mechanism spares brief synaptic-like receptor activations and preferentially reduces currents from receptors activated tonically by ambient levels of neurotransmitters. We propose that the hydrophobic sites we describe here account for clinical effects of ketamine not shared by other NMDA receptor open-channel blockers such as memantine and represent promising targets for developing safe and effective neuroactive therapeutics.
氯胺酮是一种全身麻醉剂,低剂量给药时具有快速且持久的抗抑郁作用。麻醉剂量的氯胺酮通过深入结合到N-甲基-D-天冬氨酸(NMDA)受体的孔道中,阻止电流内流,从而降低兴奋性传递。相比之下,氯胺酮产生抗抑郁作用的分子靶点仍存在争议。我们使用电生理学、基于结构的诱变以及分子和动力学建模,研究了氯胺酮在较宽浓度范围内对NMDA受体的影响。我们报告了功能和结构证据,表明在纳摩尔浓度下,氯胺酮与NMDA受体上可接近膜的疏水位点相互作用,这些位点与已确定的孔道阻断位点不同。这些相互作用使受体稳定在预开放状态,并导致受体门控出现不完全的、电压和pH依赖性降低。值得注意的是,这种变构抑制机制不会影响短暂的类似突触的受体激活,而是优先降低由环境神经递质水平持续性激活的受体产生的电流。我们提出,我们在此描述的疏水位点解释了氯胺酮与其他NMDA受体开放通道阻滞剂(如美金刚)不同的临床效应,并且是开发安全有效的神经活性治疗药物的有前景的靶点。