Suppr超能文献

营养共生体在夏威夷特有草食动物辐射中迅速丧失与植物虫瘿习性有关。

Rapid Loss of Nutritional Symbionts in an Endemic Hawaiian Herbivore Radiation Is Associated with Plant Galling Habit.

机构信息

Department of Entomology, University of California, Riverside, CA, USA.

Department of Botany, University of British Columbia, Vancouver, BC, Canada.

出版信息

Mol Biol Evol. 2024 Sep 4;41(9). doi: 10.1093/molbev/msae190.

Abstract

Insect herbivores frequently cospeciate with symbionts that enable them to survive on nutritionally unbalanced diets. While ancient symbiont gain and loss events have been pivotal for insect diversification and feeding niche specialization, evidence of recent events is scarce. We examine the recent loss of nutritional symbionts (in as little as 1 MY) in sap-feeding Pariaconus, an endemic Hawaiian insect genus that has undergone adaptive radiation, evolving various galling and free-living ecologies on a single host-plant species, Metrosideros polymorpha within the last ∼5 MY. Using 16S rRNA sequencing, we investigated the bacterial microbiomes of 19 Pariaconus species and identified distinct symbiont profiles associated with specific host-plant ecologies. Phylogenetic analyses and metagenomic reconstructions revealed significant differences in microbial diversity and functions among psyllids with different host-plant ecologies. Within a few millions of years, Pariaconus species convergently evolved the closed-gall habit twice. This shift to enclosed galls coincided with the loss of the Morganella-like symbiont that provides the essential amino acid arginine to free-living and open-gall sister species. After the Pariaconus lineage left Kauai and colonized younger islands, both open- and closed-gall species lost the Dickeya-like symbiont. This symbiont is crucial for synthesizing essential amino acids (phenylalanine, tyrosine, and lysine) as well as B vitamins in free-living species. The recurrent loss of these symbionts in galling species reinforces evidence that galls are nutrient sinks and, combined with the rapidity of the evolutionary timeline, highlights the dynamic role of insect-symbiont relationships during the diversification of feeding ecologies. We propose new Candidatus names for the novel Morganella-like and Dickeya-like symbionts.

摘要

昆虫食草动物经常与共生体共同进化,这些共生体使它们能够在营养不平衡的饮食中生存。虽然古老的共生体获得和丧失事件对昆虫的多样化和取食生态位特化至关重要,但最近事件的证据却很少。我们研究了在短时间内(不到 100 万年)营养共生体在吸食汁液的 Pariaconus 中的最近丧失,这是一个特有于夏威夷的昆虫属,经历了适应性辐射,在过去约 500 万年中,在单一的宿主植物 Metrosideros polymorpha 上进化出了各种虫瘿和自由生活的生态。使用 16S rRNA 测序,我们调查了 19 种 Pariaconus 物种的细菌微生物组,并确定了与特定宿主植物生态相关的独特共生体图谱。系统发育分析和宏基因组重建显示,具有不同宿主植物生态的叶蝉之间的微生物多样性和功能存在显著差异。在几百万年内,Pariaconus 物种两次趋同进化出封闭虫瘿的习性。这种向封闭虫瘿的转变与Morganella 样共生体的丧失同时发生,Morganella 样共生体为自由生活和开放虫瘿的姐妹种提供必需氨基酸精氨酸。在 Pariaconus 谱系离开考艾岛并殖民较年轻的岛屿后,开放和封闭虫瘿物种都失去了 Dickeya 样共生体。这种共生体对于在自由生活的物种中合成必需氨基酸(苯丙氨酸、酪氨酸和赖氨酸)以及 B 族维生素至关重要。在虫瘿物种中这些共生体的反复丧失,强化了虫瘿是营养汇的证据,再加上进化时间线的快速性,突出了昆虫-共生体关系在取食生态多样化过程中的动态作用。我们为新发现的Morganella 样和 Dickeya 样共生体提出了新的候选名称。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ea/11425488/d8efddd380cf/msae190f1.jpg

相似文献

2
Making the most of your host: the -feeding psyllids (Hemiptera, Psylloidea) of the Hawaiian Islands.
Zookeys. 2017 Jan 31(649):1-163. doi: 10.3897/zookeys.649.10213. eCollection 2017.
4
Recurrent symbiont recruitment from fungal parasites in cicadas.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5970-E5979. doi: 10.1073/pnas.1803245115. Epub 2018 Jun 11.
5
Symbiont Acquisition and Replacement as a Source of Ecological Innovation.
Trends Microbiol. 2017 May;25(5):375-390. doi: 10.1016/j.tim.2017.02.014. Epub 2017 Mar 20.
8
Co-evolution and symbiont replacement shaped the symbiosis between adelgids (Hemiptera: Adelgidae) and their bacterial symbionts.
Environ Microbiol. 2012 May;14(5):1284-95. doi: 10.1111/j.1462-2920.2012.02712.x. Epub 2012 Feb 24.

引用本文的文献

2
Coupled evolutionary rates shape a Hawaiian insect-symbiont system.
BMC Genomics. 2025 Apr 3;26(1):336. doi: 10.1186/s12864-025-11514-z.
3
A dual insect symbiont and plant pathogen improves insect host fitness under arginine limitation.
mBio. 2025 Apr 9;16(4):e0358824. doi: 10.1128/mbio.03588-24. Epub 2025 Feb 25.

本文引用的文献

3
Unveiling metabolic integration in psyllids and their nutritional endosymbionts through comparative transcriptomics analysis.
iScience. 2023 Sep 15;26(10):107930. doi: 10.1016/j.isci.2023.107930. eCollection 2023 Oct 20.
6
Symbioses shape feeding niches and diversification across insects.
Nat Ecol Evol. 2023 Jul;7(7):1022-1044. doi: 10.1038/s41559-023-02058-0. Epub 2023 May 18.
7
OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes.
Nucleic Acids Res. 2023 Jul 5;51(W1):W397-W403. doi: 10.1093/nar/gkad313.
8
Beginner's Guide on the Use of PAML to Detect Positive Selection.
Mol Biol Evol. 2023 Apr 4;40(4). doi: 10.1093/molbev/msad041.
10
Involvement of Microbiota in Insect Physiology: Focus on B Vitamins.
mBio. 2023 Feb 28;14(1):e0222522. doi: 10.1128/mbio.02225-22. Epub 2022 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验