Agroecology, National Autonomous University of Nicaragua, Leon, Leon, Leon, 21000, Nicaragua.
Economy, Postgraduate College, Mexico, Puebla, Cholula, 72760, Mexico.
F1000Res. 2025 Jan 7;12:901. doi: 10.12688/f1000research.132421.2. eCollection 2023.
This paper aims to examine the efficiency of Mexico's dairy farms within its four regions of Tlaxcala Stated.
The Envelopment Data Analysis (DEA) applied to the variable returns to a scale model (VRS) for the year 2020. Also, Examine the statistical accuracy of efficiency estimation using bootstrap resampling techniques. The results reveal that Tlaxcala's dairy farm efficiency, on the other hand, was adversely influenced by three inputs (costs): cost of investment in livestock, the total annual cost for feeding, reproduction, diseases and treatments, preventive medicine, sanitation, milking, fuel, and total labor.
The efficiency distribution among farms using VRS, CRS, and FDH technologies reveals varying patterns. Under VRS and CRS, the majority of farms exhibit high efficiency within the 0 to less than 0.2 range, while FDH displays a broader distribution, with notable efficiency at 1 and across various ranges. These findings highlight the diverse landscape of efficiency levels across different technological approaches within the agricultural sector, offering valuable insights for optimization strategies and resource allocation.
The utilization of Bootstrap methodology enhances the reliability of efficiency assessments by providing robust statistical techniques that accommodate non-normal data distributions. By incorporating Bootstrap, decision-makers can obtain more accurate estimates of efficiency levels and confidence intervals, thereby making informed decisions regarding resource allocation and optimization strategies within the agricultural sector. As part of the study, provided The Policy suggestions.
本文旨在考察墨西哥特拉斯卡拉州四个地区的奶牛场的效率。
运用数据包络分析(DEA)对 2020 年的可变规模报酬模型(VRS)进行分析。同时,利用自举重采样技术检查效率估计的统计准确性。结果表明,特拉斯卡拉州的奶牛场效率受到三个投入(成本)的不利影响:牲畜投资成本、全年饲料成本、繁殖、疾病和治疗、预防医学、卫生、挤奶、燃料和总劳动力。
使用 VRS、CRS 和 FDH 技术的农场的效率分布呈现出不同的模式。在 VRS 和 CRS 下,大多数农场的效率在 0 到小于 0.2 的范围内较高,而 FDH 则显示出更广泛的分布,在 1 和各个范围内都有显著的效率。这些发现突出了农业部门内不同技术方法之间效率水平的多样性,为优化策略和资源配置提供了有价值的见解。
Bootstrap 方法的运用通过提供适应非正态数据分布的强大统计技术,提高了效率评估的可靠性。通过使用 Bootstrap,决策者可以获得更准确的效率水平估计和置信区间,从而在农业部门内做出有关资源分配和优化策略的明智决策。作为研究的一部分,提出了政策建议。