Department of Dermatology, Institute for Regenerative Cures, School of Medicine, University of California, Davis, California, USA.
Skin and Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, China.
FASEB J. 2024 Sep 15;38(17):e70023. doi: 10.1096/fj.202401054R.
Oxygen (O) metabolism plays a critical role in cornea wound healing, regeneration, and homeostasis; however, the underlying spatiotemporal mechanisms are poorly understood. Here we used an optical sensor to profile O flux in intact and wounded corneas of mouse eyes. Intact corneas have unique centrifugal O influx profiles, smallest flux at the cornea center, and highest at the limbus. Following cornea injury, the O influx profile presents three distinct consecutive phases: a "decreasing" phase from 0 to 6 h, a "recovering" phase from 12 to 48 h, and a 'peak' phase from 48 to 72 h, congruent to previously described healing phases. Immediately after wounding, the O influx drops at wound center and wound edge but does not change significantly at the wound side or limbus. Inhibition of reactive oxygen species (ROS) in the decreasing phase significantly reduces O influx, decreases epithelial migration and consequently delays healing. The dynamics of O influx show a positive correlation with cell proliferation at the wound side, with significantly increased proliferation at the peak phase of O influx. This study elucidates the spatiotemporal O dynamics in both intact and wounded rodent cornea and shows the crucial role of O dynamics in regulating cell migration and proliferation through ROS metabolism, ultimately contributing to wound healing. These results demonstrate the usefulness of the micro-optrode in the characterization of spatiotemporal O dynamics. Injury-induced changes in O metabolism and ROS production modulate O dynamics at wound and control cell migration and proliferation, both essential for proper wound healing.
氧气(O)代谢在角膜伤口愈合、再生和动态平衡中起着关键作用;然而,其潜在的时空机制仍知之甚少。在这里,我们使用光学传感器来描绘小鼠眼睛完整和受伤角膜中的 O 通量。完整的角膜具有独特的离心 O 流入剖面,角膜中心的通量最小,而在角膜缘的通量最大。角膜损伤后,O 流入剖面呈现出三个明显的连续阶段:从 0 到 6 小时的“减少”阶段,从 12 到 48 小时的“恢复”阶段,以及从 48 到 72 小时的“峰值”阶段,与之前描述的愈合阶段一致。在受伤后立即,O 流入在伤口中心和伤口边缘处下降,但在伤口侧面或角膜缘处没有明显变化。在减少阶段抑制活性氧(ROS)会显著降低 O 流入,减少上皮迁移,从而延迟愈合。O 流入的动力学与伤口侧面的细胞增殖呈正相关,在 O 流入的峰值阶段,细胞增殖显著增加。这项研究阐明了完整和受伤的啮齿动物角膜中 O 的时空动态,表明 O 动力学通过 ROS 代谢在调节细胞迁移和增殖方面发挥着关键作用,最终有助于伤口愈合。这些结果表明微电极在表征时空 O 动力学方面的有用性。损伤引起的 O 代谢和 ROS 产生的变化调节伤口处的 O 动力学,并控制细胞迁移和增殖,这两者对伤口愈合都是必不可少的。