Department of Pharmacological Sciences, Stony Brook University School of Medicine, Basic Science Tower 8-140, Stony Brook, New York 11794, USA.
Mitchell Cancer Institute & Department of Pharmacology, University of South Alabama, Mobile, AL 36604, USA.
DNA Repair (Amst). 2024 Nov;143:103756. doi: 10.1016/j.dnarep.2024.103756. Epub 2024 Aug 28.
Free radicals produce in DNA a large variety of base and deoxyribose lesions that are corrected by the base excision DNA repair (BER) system. However, the C1'-oxidized abasic residue 2-deoxyribonolactone (dL) traps DNA repair lyases in covalent DNA-protein crosslinks (DPC), including the core BER enzyme DNA polymerase beta (Polβ). Polβ-DPC are rapidly processed in mammalian cells by proteasome-dependent digestion. Blocking the proteasome causes oxidative Polβ-DPC to accumulate in a ubiquitylated form, and this accumulation is toxic to human cells. In the current study, we investigated the mechanism of Polβ-DPC processing in cells exposed to the dL-inducing oxidant 1,10-copper-ortho-phenanthroline. Alanine substitution of either or both of two Polβ C-terminal residues, lysine-206 and lysine-244, enhanced the accumulation of mutant Polβ-DPC relative to the wild-type protein, and removal of the mutant DPC was diminished. Substitution of the N-terminal lysines 41, 61, and 81 did not affect Polβ-DPC processing. For Polβ with the C-terminal lysine substitutions, the amount of ubiquitin in the stabilized DPC was lowered by ∼40 % relative to wild-type Polβ. Suppression of the HECT domain-containing E3 ubiquitin ligase TRIP12 augmented the formation of oxidative Polβ-DPC and prevented Polβ-DPC removal in oxidant-treated cells. Consistent with the toxicity of accumulated oxidative Polβ-DPC, TRIP12 knockdown increased oxidant-mediated cytotoxicity. Thus, ubiquitylation of lysine-206 and lysine-244 by TRIP12 is necessary for digestion of Polβ-DPC by the proteasome as the rapid first steps of DPC repair to prevent their cytotoxic accumulation. Understanding how DPC formed with Polβ or other AP lyases are repaired in vivo is an important step in revealing how cells cope with the toxic potential of such adducts.
自由基在 DNA 中产生大量碱基和脱氧核糖损伤,这些损伤可被碱基切除 DNA 修复 (BER) 系统纠正。然而,C1'-氧化的无碱基残基 2-脱氧核糖内酮(dL)会将 DNA 修复核酸内切酶捕获到 DNA 蛋白交联(DPC)中,包括核心 BER 酶 DNA 聚合酶 β(Polβ)。在哺乳动物细胞中,Polβ-DPC 可通过蛋白酶体依赖性消化迅速进行处理。蛋白酶体的阻断会导致氧化的 Polβ-DPC 以泛素化形式积累,并且这种积累对人细胞有毒。在本研究中,我们研究了在暴露于诱导 dL 产生的氧化剂 1,10-铜-邻-菲咯啉的细胞中,Polβ-DPC 加工的机制。Polβ 两个 C 末端残基赖氨酸-206 和赖氨酸-244 的任一个或两个的丙氨酸取代,相对于野生型蛋白,增强了突变型 Polβ-DPC 的积累,并且突变型 DPC 的去除减少。取代 N 末端赖氨酸 41、61 和 81 不会影响 Polβ-DPC 的加工。对于具有 C 末端赖氨酸取代的 Polβ,与野生型 Polβ 相比,稳定的 DPC 中的泛素量降低了约 40%。含 HECT 结构域的 E3 泛素连接酶 TRIP12 的抑制增强了氧化的 Polβ-DPC 的形成,并防止了氧化剂处理细胞中 Polβ-DPC 的去除。与积累的氧化 Polβ-DPC 的毒性一致,TRIP12 敲低增加了氧化剂介导的细胞毒性。因此,TRIP12 对赖氨酸-206 和赖氨酸-244 的泛素化对于蛋白酶体消化 Polβ-DPC 是必需的,这是 DPC 修复的快速第一步,以防止其细胞毒性积累。了解与 Polβ 或其他 AP 核酸内切酶形成的 DPC 如何在体内修复是揭示细胞如何应对此类加合物的毒性潜力的重要步骤。