Manikanta Kumar Mopidevi, Singh Rahul, Raj C Retna
Functional Materials and Electrochemistry Lab, Department of Chemistry, IIT Kharagpur, 721302, Kharagpur, West Bengal, India.
Chem Asian J. 2024 Dec 2;19(23):e202400684. doi: 10.1002/asia.202400684. Epub 2024 Oct 30.
The surface engineering of electrocatalysts is one of the promising strategies to increase the intrinsic activity of electrocatalysts. It generates anion/cation vacancy defects and increases the electrochemically active surface area. We describe the surface engineering of NiP to favorably tune the bifunctional oxygen electrocatalytic activity and the development of a rechargeable zinc-air battery (ZAB). NiP encapsulated with N and P-dual doped carbon (NiP@NPC) is synthesized using a single-source precursor complex tris-(2,2'-bipyridine)nickel(II) bis(hexafluorophosphate). The surface engineering of the as-synthesized NiP@NPC catalyst is achieved by the controlled acid treatment at room temperature. The surface engineering removes the carbon debris and opens the pores, exfoliates the encapsulating carbon layer, increases the P-vacancy in the crystal lattice, and boosts the electrochemically active surface area. The surface-engineered catalyst exhibits enhanced bifunctional activity towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The electrocatalytically active sites of engineered catalysts are highly accessible for facilitated electron transfer kinetics. P-vacancy favors the facile formation of defect-rich OER active metal oxyhydroxide species. The rechargeable ZAB based on the engineered catalyst delivers a specific capacity of 770.25 mA h g , energy density of 692 Wh kg , and excellent charge-discharge cycling performance with negligible voltaic efficiency loss (0.6 %) after 100 h.
电催化剂的表面工程是提高电催化剂本征活性的一种有前景的策略。它会产生阴离子/阳离子空位缺陷并增加电化学活性表面积。我们描述了对NiP进行表面工程以优化其双功能氧电催化活性以及开发可充电锌空气电池(ZAB)的过程。使用单源前体配合物三(2,2'-联吡啶)镍(II)双(六氟磷酸盐)合成了包裹有N和P双掺杂碳的NiP(NiP@NPC)。通过在室温下进行可控酸处理实现了所合成的NiP@NPC催化剂的表面工程。表面工程去除了碳碎片并打开了孔隙,剥落了包裹的碳层,增加了晶格中的P空位,并提高了电化学活性表面积。表面工程后的催化剂对氧还原反应(ORR)和析氧反应(OER)表现出增强的双功能活性。工程催化剂的电催化活性位点易于进行电子转移动力学。P空位有利于形成富含缺陷的OER活性金属羟基氧化物物种。基于该工程催化剂的可充电ZAB的比容量为770.25 mA h g,能量密度为692 Wh kg,并且在100 h后具有出色的充放电循环性能,电压效率损失可忽略不计(0.6%)。