Cai Zhuoyun, Badr Rodrique G M, Hauer Lukas, Chaudhuri Krishnaroop, Skabeev Artem, Schmid Friederike, Pham Jonathan T
Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, 55099, Germany.
Soft Matter. 2024 Sep 18;20(36):7300-7312. doi: 10.1039/d4sm00576g.
When drops are placed on a sufficiently soft surface, the drop surface tension drives an out of plane deformation around the contact line (, a wetting ridge). For soft elastomeric surfaces that are swollen with a liquid, capillarity from a drop can induce a phase separation in the wetting ridge. Using confocal microscopy, we study the dynamics of phase separation at the wetting ridge of glycerol drops on silicone elastomers, which are swollen with silicone oils of varying viscosity (, molecular weight). We show that the viscosity of the swelling oil plays a large role in the oil separation size and separation rate. For networks swollen to near their maximum swelling (, saturated), lower viscosity oil separates more and separates faster at early times compared to larger viscosity oil. During late-stage wetting, the growth rate of the separation is a function of viscosity and swelling ratio, which can be described by a simple diffusive model and a defined wetting ridge geometry. In this late-stage wetting, the higher viscosity oil evidently grows faster, likely because it is further from reaching equilibrium. Interestingly, the separated oil phase region grows with a nearly constant, geometrically similar shape. Understanding how phase separation occurs on swollen substrates should provide information on how to control drop spreading, sliding, adhesion, or friction on such surfaces.
当液滴放置在足够柔软的表面上时,液滴的表面张力会在接触线周围驱动平面外变形(即润湿脊)。对于被液体溶胀的软弹性体表面,液滴产生的毛细作用会在润湿脊中引发相分离。我们使用共聚焦显微镜研究了甘油液滴在被不同粘度(即分子量)的硅油溶胀的硅橡胶上的润湿脊处的相分离动力学。我们发现,溶胀油的粘度对油相分离的尺寸和分离速率有很大影响。对于溶胀至接近最大溶胀程度(即饱和)的网络,与高粘度油相比,低粘度油在早期分离得更多且更快。在后期润湿过程中,分离的生长速率是粘度和溶胀比的函数,这可以用一个简单的扩散模型和一个确定的润湿脊几何形状来描述。在这个后期润湿阶段,高粘度油显然生长得更快,可能是因为它离达到平衡更远。有趣的是,分离出的油相区域以几乎恒定的、几何相似的形状生长。了解相分离在溶胀基底上如何发生,应该能提供有关如何控制液滴在这类表面上的铺展、滑动、粘附或摩擦的信息。