一种新型的计算机断层扫描肠影像学特征与爬行脂肪特征相结合的放射组学可预测克罗恩病患者的手术风险。

A novel computed tomography enterography radiomics combining intestinal and creeping fat features could predict surgery risk in patients with Crohn's disease.

机构信息

Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine.

Medical Imaging International Scientific and Technological Cooperation Base of Zhejiang Province, Hangzhou, China.

出版信息

Eur J Gastroenterol Hepatol. 2024 Dec 1;36(12):1384-1392. doi: 10.1097/MEG.0000000000002839. Epub 2024 Oct 30.

Abstract

OBJECTIVE

The objective of this study is to segment creeping fat and intestinal wall on computed tomography enterography (CTE) and develop a radiomic model to predict 1-year surgery risk in patients with Crohn's disease.

METHODS

This retrospective study included 135 Crohn's disease patients who underwent CTE between January and December 2021 (training cohort) and 69 patients between January and June 2022 (test cohort). A total of 1874 radiomic features were extracted from the intestinal wall and creeping fat respectively on the venous phase CTE images, and radiomic models were constructed based on the selected features using the Boruta and extreme gradient boosting algorithms. The combined models were established by integrating clinical predictors and radiomic models. The receiver operating characteristic curve, calibration curve, and decision curve analyses were used to compare the predictive performance of models.

RESULTS

In the training and test cohorts, the area under the curve (AUC) values of the creeping fat radiomic model for surgery risk stratification were 0.916 and 0.822, respectively, similar to the intestinal model with AUC values of 0.889 and 0.822. Moreover, the combined radiomic model was superior to the single models, showing good discrimination with the highest AUC values (training cohort: 0.963; test cohort: 0.882). Addition of clinical predictors to the radiomic models failed to significantly improve the diagnostic ability.

CONCLUSION

The CTE-based creeping fat radiomic model provided additional information to the intestinal radiomic model, and their combined radiomic model enables accurate surgery risk prediction of Crohn's disease patients within 1 year of CTE.

摘要

目的

本研究旨在对 CT 肠造影(CTE)中的爬行脂肪和肠壁进行分割,并构建一个放射组学模型,以预测克罗恩病患者 1 年的手术风险。

方法

本回顾性研究纳入了 2021 年 1 月至 12 月(训练队列)和 2022 年 1 月至 6 月(测试队列)期间接受 CTE 的 135 例克罗恩病患者。分别从静脉期 CTE 图像上的肠壁和爬行脂肪中提取了 1874 个放射组学特征,并使用 Boruta 和极端梯度增强算法基于选定特征构建了放射组学模型。通过整合临床预测因子和放射组学模型建立联合模型。使用受试者工作特征曲线、校准曲线和决策曲线分析比较模型的预测性能。

结果

在训练和测试队列中,爬行脂肪放射组学模型预测手术风险分层的曲线下面积(AUC)值分别为 0.916 和 0.822,与 AUC 值为 0.889 和 0.822 的肠模型相似。此外,联合放射组学模型优于单一模型,具有最高的 AUC 值(训练队列:0.963;测试队列:0.882),表现出良好的判别能力。向放射组学模型中添加临床预测因子并不能显著提高诊断能力。

结论

基于 CTE 的爬行脂肪放射组学模型为肠放射组学模型提供了附加信息,而它们的联合放射组学模型能够准确预测 CTE 后 1 年内克罗恩病患者的手术风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索