Department of Biochemistry and Biomedical Sciences, McMaster University, Ontario L8S 4L8, Canada.
Biointerfaces Institute, McMaster University, Ontario L8S 4L8, Canada.
Nucleic Acids Res. 2024 Oct 14;52(18):11177-11187. doi: 10.1093/nar/gkae778.
The 10-23 DNAzyme is one of the most active DNA-based enzymes, and in theory, can be designed to target any purine-pyrimidine junction within an RNA sequence for cleavage. However, purine-pyrimidine junctions within a large, structured RNA (lsRNA) molecule of biological origin are not always accessible to 10-23, negating its general utility as an RNA-cutting molecular scissor. Herein, we report a generalizable strategy that allows 10-23 to access any purine-pyrimidine junction within an lsRNA. Using three large SARS-CoV-2 mRNA sequences of 566, 584 and 831 nucleotides in length as model systems, we show that the use of antisense DNA oligonucleotides (ASOs) that target the upstream and downstream regions flanking the cleavage site can restore the activity (kobs) of previously poorly active 10-23 DNAzyme systems by up to 2000-fold. We corroborated these findings mechanistically using in-line probing to demonstrate that ASOs reduced 10-23 DNAzyme target site structure within the lsRNA substrates. This approach represents a simple, efficient, cost-effective, and generalizable way to improve the accessibility of 10-23 to a chosen target site within an lsRNA molecule, especially where direct access to the genomic RNA target is necessary.
10-23 DNA 酶是最活跃的基于 DNA 的酶之一,理论上可以设计用于切割 RNA 序列中任何嘌呤-嘧啶连接。然而,生物来源的大结构 RNA (lsRNA) 分子中的嘌呤-嘧啶连接并不总是可以被 10-23 接近,从而否定了其作为 RNA 切割分子剪刀的普遍适用性。在此,我们报告了一种可推广的策略,使 10-23 能够接近 lsRNA 中的任何嘌呤-嘧啶连接。使用三个长度为 566、584 和 831 个核苷酸的 SARS-CoV-2 mRNA 序列作为模型系统,我们表明,使用针对切割位点上下游区域的反义 DNA 寡核苷酸 (ASO) 可以将以前活性较差的 10-23 DNA 酶系统的活性 (kobs) 提高多达 2000 倍。我们通过在线探测来证明 ASO 降低了 lsRNA 底物中 10-23 DNA 酶靶位点的结构,从而从机制上证实了这些发现。这种方法代表了一种简单、高效、具有成本效益和可推广的方法,可以提高 10-23 在 lsRNA 分子中选定靶位点的可及性,特别是在需要直接访问基因组 RNA 靶标时。