Suppr超能文献

模拟生物分子振动分辨 XPS 的温度和互变异构效应:结合时间相关和时间无关方法来识别羰基。

Simulating temperature and tautomeric effects for vibrationally resolved XPS of biomolecules: Combining time-dependent and time-independent approaches to fingerprint carbonyl groups.

机构信息

MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China.

Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.

出版信息

J Chem Phys. 2024 Sep 14;161(10). doi: 10.1063/5.0224090.

Abstract

Carbonyl groups (C=O) play crucial roles in the photophysics and photochemistry of biological systems. O1s x-ray photoelectron spectroscopy allows for targeted investigation of the C=O group, and the coupling between C=O vibration and O1s ionization is reflected in the fine structures. To elucidate its characteristic vibronic features, systematic Franck-Condon simulations were conducted for six common biomolecules, including three purines (xanthine, caffeine, and hypoxanthine) and three pyrimidines (thymine, 5F-uracil, and uracil). The complexity of simulation for these biomolecules lies in accounting for temperature effects and potential tautomeric variations. We combined the time-dependent and time-independent methods to efficiently account for the temperature effects and to provide explicit assignments, respectively. For hypoxanthine, the tautomeric effect was considered by incorporating the Boltzmann population ratios of two tautomers. The simulations demonstrated good agreement with experimental spectra, enabling differentiation of two types of carbonyl oxygens with subtle local structural differences, positioned between two nitrogens (O1) or between one carbon and one nitrogen (O2). The analysis provided insights into the coupling between C=O vibration and O1s ionization, consistently showing an elongation of the C=O bond length (by 0.08-0.09 Å) upon O1s ionization.

摘要

羰基(C=O)在生物系统的光物理和光化学中起着至关重要的作用。O1s X 射线光电子能谱允许对 C=O 基团进行有针对性的研究,并且 C=O 振动与 O1s 电离之间的耦合反映在精细结构中。为了阐明其特征振子特征,对六种常见生物分子(包括三种嘌呤(黄嘌呤、咖啡因和次黄嘌呤)和三种嘧啶(胸腺嘧啶、5F-尿嘧啶和尿嘧啶))进行了系统的 Franck-Condon 模拟。这些生物分子的模拟复杂性在于考虑温度效应和潜在的互变异构变化。我们结合了时间相关和时间无关的方法,分别有效地考虑了温度效应,并提供了明确的分配。对于次黄嘌呤,通过包含两种互变异构体的玻尔兹曼种群比来考虑互变异构效应。模拟结果与实验光谱吻合较好,能够区分两种具有细微局部结构差异的羰基氧,它们位于两个氮原子之间(O1)或一个碳原子和一个氮原子之间(O2)。该分析提供了对 C=O 振动与 O1s 电离之间耦合的深入了解,一致表明 O1s 电离后 C=O 键长伸长(0.08-0.09 Å)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验