Suppr超能文献

折叠轮烷分子穿梭体中的级联大环和螺旋运动

Cascading Macrocycle and Helix Motions in a Foldarotaxane Molecular Shuttle.

作者信息

Hess Robin, Brenet Marius, Rajaonarivelo Haingo, Gauthier Maxime, Koehler Victor, Waelès Philip, Huc Ivan, Ferrand Yann, Coutrot Frédéric

机构信息

Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France.

Supramolecular Machines and Architectures Team, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.

出版信息

Angew Chem Int Ed Engl. 2024 Dec 9;63(50):e202413977. doi: 10.1002/anie.202413977. Epub 2024 Oct 30.

Abstract

The design of a dynamically assembled foldarotaxane was envisioned with the aim of operating as a two cascading trigger-based molecular shuttle. Under acidic conditions, both the macrocycle and helix were localized around their respective best molecular stations because they are far enough from each other not to alter the stability of complexes. The pH-dependent localization of the macrocycle along the encircled axle allowed us to modulate the association between the helical foldamer and its sites of interaction on the axle. Under kinetic control-at low concentration and room temperature-when the foldarotaxane supramolecular architecture is kinetically stable, the pH-responsive translation of the macrocycle along the thread triggered the gliding of the helix away from its initial best station. At higher concentration-when helix assembly/disassembly process is accelerated-the system reached the equilibrium state. A new foldarotaxane isomer then appeared through the change of the relative position of the helix and macrocycle along the thread. In this isomer, the helix segregated the macrocycle away from its best station. The fine control of the kinetic and thermodynamic processes, combined with the control of pH, allowed the reciprocal segregation of the helix or the ring away from their respective best sites of interaction.

摘要

动态组装的折叠轮烷的设计理念是作为一种基于两个级联触发器的分子穿梭体发挥作用。在酸性条件下,大环和螺旋体分别定位在各自最佳的分子位点周围,因为它们彼此相距足够远,不会改变配合物的稳定性。大环沿环绕轴的pH依赖性定位使我们能够调节螺旋折叠体与其在轴上的相互作用位点之间的缔合。在动力学控制下(低浓度和室温),当折叠轮烷超分子结构动力学稳定时,大环沿链的pH响应平移触发了螺旋体从其初始最佳位点滑开。在较高浓度下(当螺旋体组装/拆卸过程加速时),系统达到平衡状态。然后,通过螺旋体和大环沿链的相对位置变化出现了一种新的折叠轮烷异构体。在这种异构体中,螺旋体将大环与最佳位点隔离开来。对动力学和热力学过程的精细控制,结合pH的控制,使得螺旋体或环能够相互从各自最佳的相互作用位点分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验