Suppr超能文献

振动收缩力改善内皮细胞-细胞间相互作用,以连续管腔形成,由 Heg1/Ccm1 调控。

Oscillatory contractile forces refine endothelial cell-cell interactions for continuous lumen formation governed by Heg1/Ccm1.

机构信息

Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.

出版信息

Angiogenesis. 2024 Nov;27(4):845-860. doi: 10.1007/s10456-024-09945-5. Epub 2024 Sep 9.

Abstract

The formation and organization of complex blood vessel networks rely on various biophysical forces, yet the mechanisms governing endothelial cell-cell interactions under different mechanical inputs are not well understood. Using the dorsal longitudinal anastomotic vessel (DLAV) in zebrafish as a model, we studied the roles of multiple biophysical inputs and cerebral cavernous malformation (CCM)-related genes in angiogenesis. Our research identifies heg1 and krit1 (ccm1) as crucial for the formation of endothelial cell-cell interfaces during anastomosis. In mutants of these genes, cell-cell interfaces are entangled with fragmented apical domains. A Heg1 live reporter demonstrated that Heg1 is dynamically involved in the oscillatory constrictions along cell-cell junctions, whilst a Myosin live reporter indicated that heg1 and krit1 mutants lack actomyosin contractility along these junctions. In wild-type embryos, the oscillatory contractile forces at junctions refine endothelial cell-cell interactions by straightening junctions and eliminating excessive cell-cell interfaces. Conversely, in the absence of junctional contractility, the cell-cell interfaces become entangled and prone to collapse in both mutants, preventing the formation of a continuous luminal space. By restoring junctional contractility via optogenetic activation of RhoA, contorted junctions are straightened and disentangled. Additionally, haemodynamic forces complement actomyosin contractile forces in resolving entangled cell-cell interfaces in both wild-type and mutant embryos. Overall, our study reveals that oscillatory contractile forces governed by Heg1 and Krit1 are essential for maintaining proper endothelial cell-cell interfaces and thus for the formation of a continuous luminal space, which is essential to generate a functional vasculature.

摘要

复杂血管网络的形成和组织依赖于各种生物物理力,但在不同力学输入下,内皮细胞-细胞相互作用的机制还不清楚。本研究以斑马鱼背主动脉吻合血管(DLAV)为模型,研究了多种生物物理输入和脑动静脉畸形(CCM)相关基因在血管生成中的作用。研究确定 heg1 和 krit1(ccm1)在吻合过程中内皮细胞-细胞界面的形成中起关键作用。在这些基因的突变体中,细胞-细胞界面与碎片化的顶域纠缠在一起。Heg1 活报告表明,Heg1 动态参与细胞-细胞连接处的振荡收缩,而肌球蛋白活报告表明,heg1 和 krit1 突变体缺乏这些连接处的肌动球蛋白收缩性。在野生型胚胎中,沿着细胞-细胞连接处的振荡收缩力通过使连接处变直和消除过多的细胞-细胞界面来改善内皮细胞-细胞相互作用。相反,在缺乏连接收缩性的情况下,突变体中的细胞-细胞界面变得纠缠在一起,容易崩溃,阻止了连续腔隙的形成。通过光遗传学激活 RhoA 恢复连接收缩性,扭曲的连接处被拉直和解开。此外,血流动力在解决野生型和突变型胚胎中纠缠的细胞-细胞界面方面补充了肌动球蛋白收缩力。总之,本研究表明,由 Heg1 和 Krit1 控制的振荡收缩力对于维持适当的内皮细胞-细胞界面以及形成连续的腔隙至关重要,这对于生成功能性血管至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded8/11564304/a5f96d2e587c/10456_2024_9945_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验