Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
Eur J Pharmacol. 2024 Nov 15;983:176990. doi: 10.1016/j.ejphar.2024.176990. Epub 2024 Sep 7.
Epilepsy, a neurological disorder characterized by prolonged and excessive seizures, has been linked to elevated levels of the tumor suppressor gene p53, which contributes to neuronal dysfunction. This review explores the molecular mechanisms of p53 in epilepsy and discusses potential future therapeutic strategies. Research indicates that changes in p53 expression during neuronal apoptosis, neuroinflammation, and oxidative stress play a significant role in the pathogenesis of epilepsy. Elevated p53 disrupts glutamatergic neurotransmission and hyperactivates NMDA and AMPA receptors, leading to increased neuronal calcium influx, mitochondrial oxidative stress, and activation of apoptotic pathways mediated neuronal dysfunction, exacerbating epileptogenesis. The involvement of p53 in epilepsy suggests that targeting this protein could be beneficial in mitigating neuronal damage and preventing seizure recurrence. Pharmacological agents like pifithrin-α have shown promise in reducing p53-mediated apoptosis and seizure severity. Gene therapy approaches, such as viral vector-mediated delivery of wild-type p53 or RNA interference targeting mutant p53, have also been effective in restoring normal p53 function and reducing seizure susceptibility. Despite these advances, the heterogeneous nature of epilepsy and potential long-term side effects of p53 modulation present challenges. Future research should focus on elucidating the precise molecular mechanisms of p53 and developing personalized therapeutic strategies. Modulating p53 activity holds promise for reducing seizure susceptibility and improving the quality of life for individuals with epilepsy. The current review provides the understanding the intricate role of p53 in neuroinflammatory pathways, including JAK-STAT, JNK, NF-κB, Sonic Hedgehog, and Wnt, is crucial for developing targeted therapies.
癫痫是一种以长时间和过度癫痫发作为特征的神经障碍疾病,与肿瘤抑制基因 p53 的水平升高有关,p53 导致神经元功能障碍。本综述探讨了 p53 在癫痫中的分子机制,并讨论了潜在的未来治疗策略。研究表明,p53 表达在神经元凋亡、神经炎症和氧化应激期间的变化在癫痫发病机制中起重要作用。升高的 p53 破坏谷氨酸能神经传递,过度激活 NMDA 和 AMPA 受体,导致神经元钙内流增加、线粒体氧化应激和凋亡途径激活介导的神经元功能障碍,从而加剧癫痫发生。p53 参与癫痫表明靶向该蛋白可能有助于减轻神经元损伤和防止癫痫复发。药理学药物如 pifithrin-α 已显示出在减少 p53 介导的细胞凋亡和癫痫严重程度方面的潜力。基因治疗方法,如通过病毒载体介导的野生型 p53 传递或针对突变型 p53 的 RNA 干扰,也已被证明能有效恢复正常的 p53 功能并降低癫痫易感性。尽管取得了这些进展,但癫痫的异质性和 p53 调节的潜在长期副作用仍然是挑战。未来的研究应集中阐明 p53 的精确分子机制,并开发个性化的治疗策略。调节 p53 活性有望降低癫痫易感性并提高癫痫患者的生活质量。本综述提供了对 p53 在神经炎症途径中的复杂作用的理解,包括 JAK-STAT、JNK、NF-κB、Sonic Hedgehog 和 Wnt,对于开发靶向治疗方法至关重要。