Suppr超能文献

地下水深度估计的最优插值方法。

Optimal interpolation approach for groundwater depth estimation.

作者信息

Yasin Kalid Hassen, Gelete Tadele Bedo, Iguala Anteneh Derribew, Kebede Erana

机构信息

Department of Remote Sensing, Space Science and Geospatial Institute, Entoto Observatory and Research Center (EORC), P.O. Box 33679, Addis Ababa, Ethiopia.

Geo-Information Science Program, School of Geography and Environmental Studies, Haramaya University, P.O. Box 138, 3220, Dire Dawa, Ethiopia.

出版信息

MethodsX. 2024 Aug 15;13:102916. doi: 10.1016/j.mex.2024.102916. eCollection 2024 Dec.

Abstract

In arid and semi-arid regions where surface water resources are scarce, groundwater is crucial. Accurate mapping of groundwater depth is vital for sustainable management practices. This study evaluated the performance of three spatial interpolation techniques - inverse distance weighting (IDW), ordinary kriging (OK), and radial basis functions (RBF) - in predicting groundwater depth distribution across Dire Dawa City, Ethiopia. The results demonstrated the superiority of the RBF method, exhibiting the lowest RMSE (3.21 m), MAE (0.16 m), and the highest R (0.99) compared to IDW and OK. The IDW method emerged as the next best performer (RMSE = 4.68 m, MAE = 0.16 m, R= 0.97), followed by OK (RMSE = 5.32 m, MAE = 0.42 m, R= 0.95). The RBF's superior accuracy aligns with findings from other semi-arid regions, underscoring its suitability for data-scarce areas like Dire Dawa. This comparative evaluation provides valuable insights for selecting the optimal interpolation method for groundwater depth mapping, supporting informed decision-making in local water resource management. The methodological approach comprised:•Implementation of three interpolation techniques, namely, inverse distance weighting (IDW), ordinary kriging (OK), and radial basis functions (RBF), utilizing 56 groundwater depth measurements from locations dispersed throughout the study area.•Cross-validation through randomly withholding 20 % of the data for validation purposes.•Comparison of the techniques based on statistical measures of accuracy, including root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R).

摘要

在地表水资源稀缺的干旱和半干旱地区,地下水至关重要。准确绘制地下水深度图对于可持续管理实践至关重要。本研究评估了三种空间插值技术——反距离加权法(IDW)、普通克里金法(OK)和径向基函数法(RBF)——在预测埃塞俄比亚德雷达瓦市地下水深度分布方面的性能。结果表明,与IDW和OK相比,RBF方法具有优越性,其均方根误差(RMSE)最低(3.21米),平均绝对误差(MAE)最低(0.16米),决定系数(R)最高(0.99)。IDW方法是次优方法(RMSE = 4.68米,MAE = 0.16米,R = 0.97),其次是OK方法(RMSE = 5.32米,MAE = 0.42米,R = 0.95)。RBF方法的卓越准确性与其他半干旱地区的研究结果一致,凸显了其适用于德雷达瓦这样数据稀缺的地区。这种比较评估为选择用于地下水深度测绘的最佳插值方法提供了有价值的见解,有助于当地水资源管理中的明智决策。该方法包括:•采用三种插值技术,即反距离加权法(IDW)、普通克里金法(OK)和径向基函数法(RBF),利用研究区域内分散地点的56个地下水深度测量值。•通过随机留出20%的数据用于验证目的进行交叉验证。•基于准确性的统计指标(包括均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R))对这些技术进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5fe/11381983/0c3d5e3aba97/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验