State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
J Clin Invest. 2024 Sep 10;134(20):e177220. doi: 10.1172/JCI177220.
Translation of mRNA to protein is tightly regulated by transfer RNAs (tRNAs), which are subject to various chemical modifications that maintain structure, stability, and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report that the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite incompetent proliferation and osteogenic commitment. Further exploration revealed that impairment of Rho GTPase signaling upregulated the level of branched-chain amino acid transaminase 1 (BCAT1) that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation by targeting either ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulation of cellular metabolism and indicates suspension of translation initiation as a quality control mechanism in response to tRNA dysregulation.
mRNA 到蛋白质的翻译受到转移 RNA(tRNA)的严格调控,tRNA 受到各种化学修饰的影响,这些修饰维持着 tRNA 的结构、稳定性和功能。患者的 tRNA N7-甲基鸟苷(m7G)修饰缺乏会导致一种原发性侏儒症,但潜在的机制尚不清楚。在这里,我们报告 m7G 的缺失重新连接了细胞代谢,导致了原发性侏儒症的发病机制。条件性敲除催化酶 Mettl1 或支架蛋白 Wdr4 的错义突变严重损害了软骨内成骨和骨量的积累。在机制上,Mettl1 敲除降低了 m7G 修饰的 tRNA 的丰度,并抑制了与细胞骨架和 Rho GTPase 信号相关的 mRNA 的翻译。同时,Mettl1 敲除增强了细胞能量代谢,尽管增殖和成骨能力受损。进一步的探索表明,Rho GTPase 信号的损伤上调了支链氨基酸转氨酶 1(BCAT1)的水平,从而重新连接了细胞代谢并限制了细胞内α-酮戊二酸(αKG)。补充αKG 改善了 Mettl1 缺陷小鼠的骨骼缺陷。除了代谢相关 mRNA 的选择性翻译外,我们还进一步揭示了 Mettl1 敲除通过整合应激反应(ISR)和哺乳动物雷帕霉素靶蛋白复合物 1(mTORC1)信号通路全局调节翻译。通过靶向 ISR 或 mTORC1 恢复翻译会加重 Mettl1 缺陷小鼠的骨骼缺陷。总的来说,我们的研究揭示了 m7G tRNA 修饰通过调节细胞代谢在骨骼发育中的关键作用,并表明翻译起始的暂停是一种针对 tRNA 失调的质量控制机制。