Suppr超能文献

基于超声的放射组学模型评估子痫前期孕妇的胎盘功能。

Ultrasound based radiomics model for assessment of placental function in pregnancies with preeclampsia.

机构信息

Department of Ultrasound Medicine, Affiliated Hospital of Jining Medical College, Shandong, 272029, China.

Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.

出版信息

Sci Rep. 2024 Sep 10;14(1):21123. doi: 10.1038/s41598-024-72046-2.

Abstract

The goal of our research is to elucidate and better assess placental function in rats with preeclampsia through an innovative application of ultrasound-based radiomics. Using a rat model induced with L-NAME, we carefully investigated placental dysfunction via microstructural analysis and immunoprotein level assessment. Employing the Boruta feature selection method on ultrasound images facilitated the identification of crucial features, consequently enabling the development of a robust model for classifying placental dysfunction. Our study included 12 pregnant rats, and thorough placental evaluations were conducted on 160 fetal rats. Distinct alterations in placental microstructure and angiogenic factor expression were evident in rats with preeclampsia. Leveraging high-throughput mining of quantitative image features, we extracted 558 radiomic features, which were subsequently used to construct an impressive evaluation model with an area under the receiver operating curve (AUC) of 0.95. This model also exhibited a remarkable sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of 88.7%, 91.5%, 90.2%, 90.4%, and 90.0%, respectively. Our findings highlight the ability of ultrasound-based radiomics to detect abnormal placental features, demonstrating its potential for evaluating both normative and impaired placental function with high precision and reliability.

摘要

我们的研究目标是通过创新应用超声放射组学来阐明和更好地评估子痫前期大鼠的胎盘功能。我们使用 L-NAME 诱导的大鼠模型,通过微结构分析和免疫蛋白水平评估仔细研究胎盘功能障碍。在超声图像上使用 Boruta 特征选择方法有助于确定关键特征,从而能够为分类胎盘功能障碍开发出稳健的模型。我们的研究包括 12 只怀孕大鼠,对 160 只胎儿大鼠进行了彻底的胎盘评估。在患有子痫前期的大鼠中,胎盘微结构和血管生成因子表达明显改变。利用高通量挖掘定量图像特征,我们提取了 558 个放射组学特征,随后使用这些特征构建了一个令人印象深刻的评估模型,其接收者操作曲线 (AUC) 下的面积为 0.95。该模型还表现出 88.7%、91.5%、90.2%、90.4%和 90.0%的优异灵敏度、特异性、准确性、阳性预测值和阴性预测值。我们的研究结果突出了基于超声的放射组学检测异常胎盘特征的能力,表明其具有以高精度和可靠性评估正常和受损胎盘功能的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd16/11387498/078304843b04/41598_2024_72046_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验