Sun Xianglang, Zhang Chunlei, Gao Danpeng, Yu Xinyu, Li Bo, Wu Xin, Zhang Shoufeng, He Yaxin, Yu Zexin, Qian Liangchen, Gong Jianqiu, Li Shuai, Li Nan, Zhu Zonglong, Li Zhong'an
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202412819. doi: 10.1002/anie.202412819. Epub 2024 Nov 2.
The electron transporting layer (ETL) used in high performance inverted perovskite solar cells (PSCs) is typically composed of C, which requires time-consuming and costly thermal evaporation deposition, posing a significant challenge for large-scale production. To address this challenge, herein, we present a novel design of solution-processible electron transporting material (ETM) by grafting a non-fullerene acceptor fragment onto C. The synthesized BTPC exhibits an exceptional solution processability and well-organized molecular stacking pattern, enabling the formation of uniform and structurally ordered film with high electron mobility. When applied as ETL in inverted PSCs, BTPC not only exhibits excellent interfacial contact with the perovskite layer, resulting in enhanced electron extraction and transfer efficiency, but also effectively passivates the interfacial defects to suppress non-radiative recombination. Resultant BTPC-based inverted PSCs deliver an impressive power conversion efficiency (PCE) of 25.3 % and retain almost 90 % of the initial values after aging at 85 °C for 1500 hours in N. More encouragingly, the solution-processed BTPC ETL demonstrates remarkable film thickness tolerance, and enables a high PCE up to 24.8 % with the ETL thickness of 200 nm. Our results highlight BTPC as a promising solution-processed fullerene-based ETM, opening an avenue for improving the scalability of efficient and stable inverted PSCs.
用于高性能倒置钙钛矿太阳能电池(PSC)的电子传输层(ETL)通常由C组成,这需要耗时且成本高昂的热蒸发沉积,给大规模生产带来了重大挑战。为应对这一挑战,在此我们提出了一种新颖的可溶液加工电子传输材料(ETM)的设计,通过将非富勒烯受体片段接枝到C上。合成的BTPC表现出优异的溶液加工性和有序的分子堆积模式,能够形成具有高电子迁移率的均匀且结构有序的薄膜。当用作倒置PSC的ETL时,BTPC不仅与钙钛矿层表现出优异的界面接触,从而提高电子提取和转移效率,还能有效钝化界面缺陷以抑制非辐射复合。基于BTPC的倒置PSC实现了令人印象深刻的25.3%的功率转换效率(PCE),并且在85°C下于氮气中老化1500小时后保留了近90%的初始值。更令人鼓舞的是,溶液加工的BTPC ETL表现出显著的膜厚耐受性,并且在ETL厚度为200 nm时能够实现高达24.8%的高PCE。我们的结果突出了BTPC作为一种有前景的基于富勒烯的可溶液加工ETM,为提高高效稳定倒置PSC的可扩展性开辟了一条途径。