Suppr超能文献

通过沸石微介孔扩散优化实现聚乙烯废料加氢裂化中极窄链烷烃产物分布

Ultra-Narrow Alkane Product Distribution in Polyethylene Waste Hydrocracking by Zeolite Micro-Mesopore Diffusion Optimization.

作者信息

Wang Shuai, Wang Weichen, Chu Mingyu, Gao Daowei, Wang Yong, Lv Yipin, Wang Rongyao, Song Lianghao, Zhao Huaiqing, Chen Jinxing, Chen Guozhu

机构信息

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2024 Dec 2;63(49):e202409288. doi: 10.1002/anie.202409288. Epub 2024 Oct 30.

Abstract

Plastic pollution poses a pressing environmental challenge in modern society. Chemical catalytic conversion has emerged as a promising solution for upgrading waste plastics into valuable liquid alkanes and other high value products. However, the current methods yield mixed products with a wide carbon distribution. To address this challenge, we present a bifunctional catalytic system consisting of β zeolite mixed hierarchical Pt@Hie-TS-1, designed for the conversion of low-density polyethylene (LDPE) into liquid alkanes. This system achieves a 94.0 % yield of liquid alkane, with 84.8 % of C-C light alkanes. Combined with in situ FTIR and molecular dynamics simulation, the shape-selective mechanisms is elucidated, which ensures that only olefins of the appropriate size can diffuse to the encapsulated Pt sites within the zeolite for hydrogenation, resulting in an ultra-narrow product distribution. Furthermore, by optimizing the micro-mesopores of Pt@Hie-TS-1, the scaling relationship between the pore structure and the conversion/selectivity is identified. The rapid diffusion of olefins within these micro-mesopores significantly enhances the catalytic efficiency. Our findings contribute to the design of efficient catalysts for plastic waste valorization.

摘要

塑料污染是现代社会面临的紧迫环境挑战。化学催化转化已成为一种有前景的解决方案,可将废塑料升级为有价值的液态烷烃和其他高价值产品。然而,目前的方法会产生碳分布广泛的混合产品。为应对这一挑战,我们提出了一种由β沸石混合分级Pt@Hie-TS-1组成的双功能催化体系,用于将低密度聚乙烯(LDPE)转化为液态烷烃。该体系实现了94.0%的液态烷烃产率,其中84.8%为C-C轻质烷烃。结合原位傅里叶变换红外光谱(FTIR)和分子动力学模拟,阐明了择形机制,该机制确保只有合适尺寸的烯烃才能扩散到沸石内封装的Pt位点进行氢化,从而产生超窄的产品分布。此外,通过优化Pt@Hie-TS-1的微介孔,确定了孔结构与转化率/选择性之间的标度关系。烯烃在这些微介孔内的快速扩散显著提高了催化效率。我们的研究结果有助于设计用于塑料废物增值的高效催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验