Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, Toledo, Spain.
Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia.
Acta Physiol (Oxf). 2024 Oct;240(10):e14215. doi: 10.1111/apha.14215. Epub 2024 Sep 12.
To investigate how delayed post-exercise carbohydrate intake affects muscle glycogen, metabolic- and mitochondrial-related molecular responses, and subsequent high-intensity interval exercise (HIIE) capacity.
In a double-blind cross-over design, nine recreationally active men performed HIIE (10 × 2-min cycling, 94% W˙) in the fed state, on two occasions. During 0-3 h post-HIIE, participants drank either carbohydrates ("Immediate Carbohydrate" [IC], providing 2.4 g/kg) or water ("Delayed Carbohydrate" [DC]); total carbohydrate intake over 24 h post-HIIE was matched (7 g/kg/d). Skeletal muscle (sampled pre-HIIE, post-HIIE, +3 h, +8 h, +24 h) was analyzed for whole-muscle glycogen and mRNA content, plus signaling proteins in cytoplasmic- and nuclear-enriched fractions. After 24 h, participants repeated the HIIE protocol until failure, to test subsequent HIIE capacity; blood lactate, heart rate, and ratings of perceived effort (RPE) were measured throughout.
Muscle glycogen concentrations, and relative changes, were similar between conditions throughout (p > 0.05). Muscle glycogen was reduced from baseline (mean ± SD mmol/kg dm; IC: 409 ± 166; DC: 352 ± 76) at post-HIIE (IC: 253 ± 96; DC: 214 ± 82), +3 h (IC: 276 ± 62; DC: 269 ± 116) and + 8 h (IC: 321 ± 56; DC: 269 ± 116), returning to near-baseline by +24 h. Several genes (PGC-1ɑ, p53) and proteins (p-ACC, p-P38 MAPK) elicited typical exercise-induced changes irrespective of condition. Delaying carbohydrate intake reduced next-day HIIE capacity (5 ± 3 intervals) and increased RPE (~2 ratings), despite similar physiological responses between conditions.
Molecular responses to HIIE (performed in the fed state) were not enhanced by delayed post-exercise carbohydrate intake. Our findings support immediate post-exercise refueling if the goal is to maximize next-day HIIE capacity and recovery time is ≤24 h.
研究运动后延迟碳水化合物摄入如何影响肌肉糖原、代谢和线粒体相关的分子反应,以及随后的高强度间歇训练(HIIE)能力。
在一项双盲交叉设计中,9 名有规律运动的男性在进食状态下进行了 2 次 HIIE(10×2 分钟自行车运动,约 94% W˙)。在 HIIE 后 0-3 小时内,参与者分别饮用碳水化合物(“即时碳水化合物”[IC],提供 2.4g/kg)或水(“延迟碳水化合物”[DC]);24 小时后总碳水化合物摄入量匹配(~7g/kg/d)。在 HIIE 前、HIIE 后、+3 小时、+8 小时、+24 小时采集骨骼肌(肌肉)样本,分析整块肌肉糖原和 mRNA 含量,以及细胞质和核富集部分的信号蛋白。24 小时后,参与者重复 HIIE 方案直至力竭,以测试随后的 HIIE 能力;整个过程中测量血乳酸、心率和感觉努力程度(RPE)。
整个过程中,肌肉糖原浓度及其相对变化在两种情况下均相似(p>0.05)。HIIE 后(IC:253±96;DC:214±82)、+3 小时(IC:276±62;DC:269±116)和+8 小时(IC:321±56;DC:269±116)肌肉糖原均较基线降低(平均±标准差 mmol/kg dm;IC:409±166;DC:352±76),到 24 小时时接近基线。一些基因(PGC-1α、p53)和蛋白质(p-ACC、p-P38 MAPK)无论条件如何都产生了典型的运动诱导变化。尽管两种情况下的生理反应相似,但延迟碳水化合物摄入会降低次日的 HIIE 能力(5±3 个间隔)并增加 RPE(~2 个等级)。
在进食状态下进行的 HIIE 后,延迟碳水化合物摄入不会增强分子反应。如果目标是最大限度地提高次日的 HIIE 能力并且恢复时间≤24 小时,那么我们的研究结果支持运动后立即补充营养。