Wang Zhibo, Zhu Shenbo, Peng Xiaoxiao, Luo Siwei, Liang Wenting, Zhang Ziyue, Dou Yunjie, Zhang Guangye, Chen Shangshang, Hu Huawei, Chen Yiwang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China.
Angew Chem Int Ed Engl. 2025 Jan 2;64(1):e202412903. doi: 10.1002/anie.202412903. Epub 2024 Oct 30.
The difluorobenzothiadizole (ffBT) unit is one of the most classic electron-accepting building blocks used to construct D-A copolymers for applications in organic solar cells (OSCs). Historically, ffBT-based polymers have achieved record power conversion efficiencies (PCEs) in fullerene-based OSCs owing to their strong temperature-dependent aggregation (TDA) characteristics. However, their excessive miscibility and rapid aggregation kinetics during film formation have hindered their performance with state-of-the-art non-fullerene acceptors (NFAs). Herein, we synthesized two ffBT-based copolymers, PffBT-2T and PffBT-4T, incorporating different π-bridges to modulate intermolecular interactions and aggregation tendencies. Experimental and theoretical studies revealed that PffBT-4T exhibits reduced electrostatic potential differences and miscibility with L8-BO compared to PffBT-2T. This facilitates improved phase separation in the active layer, leading to enhanced molecular packing and optimized morphology. Moreover, PffBT-4T demonstrated a prolonged nucleation and crystal growth process, leading to enhanced molecular packing and optimized morphology. Consequently, PffBT-4T-based devices achieved a remarkable PCE of 17.5 %, setting a new record for ffBT-based photovoltaic polymers. Our findings underscore the importance of conjugate backbone modulation in controlling aggregation behavior and film formation kinetics, providing valuable insights for the design of high-performance polymer donors in organic photovoltaics.
二氟苯并噻二唑(ffBT)单元是用于构建用于有机太阳能电池(OSC)的给体-受体(D-A)共聚物的最经典的电子受体结构单元之一。从历史上看,基于ffBT的聚合物由于其强烈的温度依赖性聚集(TDA)特性,在基于富勒烯的OSC中实现了创纪录的功率转换效率(PCE)。然而,它们在成膜过程中过度的混溶性和快速的聚集动力学阻碍了它们与最先进的非富勒烯受体(NFA)的性能表现。在此,我们合成了两种基于ffBT的共聚物PffBT-2T和PffBT-4T,它们引入了不同的π桥来调节分子间相互作用和聚集趋势。实验和理论研究表明,与PffBT-2T相比,PffBT-4T与L8-BO的静电势差和混溶性降低。这有助于改善活性层中的相分离,导致分子堆积增强和形态优化。此外,PffBT-4T表现出延长的成核和晶体生长过程,导致分子堆积增强和形态优化。因此,基于PffBT-4T的器件实现了17.5%的显著PCE,为基于ffBT的光伏聚合物创造了新纪录。我们的研究结果强调了共轭主链调制在控制聚集行为和成膜动力学方面的重要性,为有机光伏中高性能聚合物给体的设计提供了有价值的见解。