Suppr超能文献

识别青少年热情的心理社会和生态决定因素:使用机器学习的综合横断面分析。

Identifying Psychosocial and Ecological Determinants of Enthusiasm In Youth: Integrative Cross-Sectional Analysis Using Machine Learning.

机构信息

Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.

出版信息

JMIR Public Health Surveill. 2024 Sep 12;10:e48705. doi: 10.2196/48705.

Abstract

BACKGROUND

Understanding the factors contributing to mental well-being in youth is a public health priority. Self-reported enthusiasm for the future may be a useful indicator of well-being and has been shown to forecast social and educational success. Typically, cross-domain measures of ecological and health-related factors with relevance to public policy and programming are analyzed either in isolation or in targeted models assessing bivariate interactions. Here, we capitalize on a large provincial data set and machine learning to identify the sociodemographic, experiential, behavioral, and other health-related factors most strongly associated with levels of subjective enthusiasm for the future in a large sample of elementary and secondary school students.

OBJECTIVE

The aim of this study was to identify the sociodemographic, experiential, behavioral, and other health-related factors associated with enthusiasm for the future in elementary and secondary school students using machine learning.

METHODS

We analyzed data from 13,661 participants in the 2019 Ontario Student Drug Use and Health Survey (OSDUHS) (grades 7-12) with complete data for our primary outcome: self-reported levels of enthusiasm for the future. We used 50 variables as model predictors, including demographics, perception of school experience (i.e., school connectedness and academic performance), physical activity and quantity of sleep, substance use, and physical and mental health indicators. Models were built using a nonlinear decision tree-based machine learning algorithm called extreme gradient boosting to classify students as indicating either high or low levels of enthusiasm. Shapley additive explanations (SHAP) values were used to interpret the generated models, providing a ranking of feature importance and revealing any nonlinear or interactive effects of the input variables.

RESULTS

The top 3 contributors to higher self-rated enthusiasm for the future were higher self-rated physical health (SHAP value=0.62), feeling that one is able to discuss problems or feelings with their parents (SHAP value=0.49), and school belonging (SHAP value=0.32). Additionally, subjective social status at school was a top feature and showed nonlinear effects, with benefits to predicted enthusiasm present in the mid-to-high range of values.

CONCLUSIONS

Using machine learning, we identified key factors related to self-reported enthusiasm for the future in a large sample of young students: perceived physical health, subjective school social status and connectedness, and quality of relationship with parents. A focus on perceptions of physical health and school connectedness should be considered central to improving the well-being of youth at the population level.

摘要

背景

了解促进青少年心理健康的因素是公共卫生的重点。对未来的自我报告热情可能是幸福感的一个有用指标,并已被证明可以预测社交和教育成功。通常,具有相关性的生态和与健康相关的跨领域措施与公共政策和规划相关,可单独分析或在评估二元相互作用的有针对性的模型中进行分析。在这里,我们利用一个大型省级数据集和机器学习来确定与大量中小学生对未来的主观热情水平最相关的社会人口统计学、经验、行为和其他与健康相关的因素。

目的

本研究旨在使用机器学习确定与中小学生对未来的热情相关的社会人口统计学、经验、行为和其他与健康相关的因素。

方法

我们分析了 2019 年安大略省学生毒品使用和健康调查(OSDUHS)(7-12 年级)中 13661 名参与者的数据,这些参与者的主要结果(自我报告的对未来的热情水平)数据完整。我们使用 50 个变量作为模型预测因子,包括人口统计学、对学校经历的感知(即学校联系和学业成绩)、体育活动和睡眠时间、物质使用以及身体和心理健康指标。使用一种称为极端梯度增强的非线性决策树机器学习算法构建模型,以将学生分类为表示高水平或低水平的热情。使用 Shapley 加法解释(SHAP)值来解释生成的模型,提供特征重要性的排名,并揭示输入变量的任何非线性或交互作用。

结果

对未来自我评估的热情更高的前 3 个贡献者是更高的自我评估身体健康(SHAP 值=0.62)、能够与父母讨论问题或感受(SHAP 值=0.49)和学校归属感(SHAP 值=0.32)。此外,学校的主观社会地位是一个重要特征,并表现出非线性效应,在中高价值范围内存在对预测热情的好处。

结论

使用机器学习,我们在一个大型年轻学生样本中确定了与自我报告的对未来的热情相关的关键因素:感知身体健康、主观学校社会地位和联系以及与父母的关系质量。关注身体健康和学校联系的观念应被视为提高人口水平青少年幸福感的核心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876a/11427878/c734ac3f994c/publichealth_v10i1e48705_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验