Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia.
Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, Saudi Arabia.
Plant Biotechnol J. 2024 Dec;22(12):3392-3405. doi: 10.1111/pbi.14460. Epub 2024 Sep 12.
Plants offer a promising chassis for the large-scale, cost-effective production of diverse therapeutics, including antimicrobial peptides (AMPs). However, key advances will reduce production costs, including simplifying the downstream processing and purification steps. Here, using Nicotiana benthamiana plants, we present an improved modular design that enables AMPs to be secreted via the endomembrane system and sequestered in an extracellular compartment, the apoplast. Additionally, we translationally fused an AMP to a mutated small ubiquitin-like modifier sequence, thereby enhancing peptide yield and solubilizing the peptide with minimal aggregation and reduced occurrence of necrotic lesions in the plant. This strategy resulted in substantial peptide accumulation, reaching around 2.9 mg AMP per 20 g fresh weight of leaf tissue. Furthermore, the purified AMP demonstrated low collateral toxicity in primary human skin cells, killed pathogenic bacteria by permeabilizing the membrane and exhibited anti-infective efficacy in a preclinical mouse (Mus musculus) model system, reducing bacterial loads by up to three orders of magnitude. A base-case techno-economic analysis demonstrated the economic advantages and scalability of our plant-based platform. We envision that our work can establish plants as efficient bioreactors for producing preclinical-grade AMPs at a commercial scale, with the potential for clinical applications.
植物为大规模、经济高效地生产各种治疗药物,包括抗菌肽(AMPs),提供了一个有前景的底盘。然而,关键的进展将降低生产成本,包括简化下游处理和纯化步骤。在这里,我们使用烟草植物展示了一种改进的模块化设计,使 AMP 能够通过内膜系统分泌,并被隔离在细胞外腔室,即质外体中。此外,我们将 AMP 与一个突变的小泛素样修饰序列进行翻译融合,从而提高了肽的产量,并使肽溶解,最小化聚集,减少植物中坏死病变的发生。这种策略导致了大量的肽积累,达到每 20 克新鲜叶片组织约 2.9 毫克 AMP。此外,纯化的 AMP 在原代人皮肤细胞中表现出低的附带毒性,通过破坏细胞膜杀死病原菌,并在临床前小鼠(Mus musculus)模型系统中表现出抗感染功效,将细菌负荷降低了多达三个数量级。一项基本技术经济分析表明,我们的植物平台具有经济优势和可扩展性。我们设想,我们的工作可以使植物成为在商业规模上生产临床前级 AMP 的高效生物反应器,并具有临床应用的潜力。