Suppr超能文献

基于VASARI特征的预测性机器学习模型用于世界卫生组织分级、异柠檬酸脱氢酶突变和1p19q共缺失状态:一项多中心研究。

Predictive machine learning models based on VASARI features for WHO grading, isocitrate dehydrogenase mutation, and 1p19q co-deletion status: a multicenter study.

作者信息

Zhao Wei, Xie Chao, Hanjiaerbieke Kukun, Xu Rui, Pahati Tuxunjiang, Wang Shaoyu, Li Junjie, Wang Yunling

机构信息

Imaging Centre, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China.

Imaging Centre, The Seventh Affiliated Hospital of Xinjiang Medical University Urumqi 832000, Xinjiang, China.

出版信息

Am J Cancer Res. 2024 Aug 25;14(8):3826-3841. doi: 10.62347/MZLF2460. eCollection 2024.

Abstract

The objective of our study was to develop predictive models using Visually Accessible Rembrandt Images (VASARI) magnetic resonance imaging (MRI) features combined with machine learning techniques to predict the World Health Organization (WHO) grade, isocitrate dehydrogenase (IDH) mutation status, and 1p19q co-deletion status of high-grade gliomas. To achieve this, we retrospectively included 485 patients with high-grade glioma from the First Affiliated Hospital of Xinjiang Medical University, of which 312 patients were randomly divided into a training set (n=218) and a test set (n=94) in a 7:3 ratio. Twenty-five VASARI MRI features were selected from an initial set of 30, and three machine learning models - Multilayer Perceptron (MP), Bernoulli Naive Bayes (BNB), and Logistic Regression (LR) - were trained using the training set. The most informative features were identified using recursive feature elimination. Model performance was assessed using the test set and an independent validation set of 173 patients from Beijing Tiantan Hospital. The results indicated that the MP model exhibited the highest predictive accuracy on the training set, achieving an area under the curve (AUC) close to 1, indicating perfect discrimination. However, its performance decreased in the test and validation sets; particularly for predicting the 1p19q co-deletion status, the AUC was only 0.703, suggesting potential overfitting. On the other hand, the BNB model demonstrated robust generalization on the test and validation sets, with AUC values of 0.8292 and 0.8106, respectively, for predicting IDH mutation status and 1p19q co-deletion status, indicating high accuracy, sensitivity, and specificity. The LR model also showed good performance with AUCs of 0.7845 and 0.8674 on the test and validation sets, respectively, for predicting IDH mutation status, although it was slightly inferior to the BNB model for the 1p19q co-deletion status. In conclusion, integrating VASARI MRI features with machine learning techniques shows promise for the non-invasive prediction of glioma molecular markers, which could guide treatment strategies and improve prognosis in glioma patients. Nonetheless, further model optimization and validation are necessary to enhance its clinical utility.

摘要

我们研究的目的是利用视觉可及的伦勃朗图像(VASARI)磁共振成像(MRI)特征结合机器学习技术,开发预测模型,以预测世界卫生组织(WHO)分级、异柠檬酸脱氢酶(IDH)突变状态和高级别胶质瘤的1p19q共缺失状态。为实现这一目标,我们回顾性纳入了新疆医科大学第一附属医院的485例高级别胶质瘤患者,其中312例患者以7:3的比例随机分为训练集(n = 218)和测试集(n = 94)。从最初的30个特征中选择了25个VASARI MRI特征,并使用训练集对三种机器学习模型——多层感知器(MP)、伯努利朴素贝叶斯(BNB)和逻辑回归(LR)——进行训练。使用递归特征消除法确定最具信息量的特征。使用测试集和来自北京天坛医院的173例患者的独立验证集评估模型性能。结果表明,MP模型在训练集上表现出最高的预测准确性,曲线下面积(AUC)接近1,表明具有完美的区分度。然而,其在测试集和验证集中的性能下降;特别是在预测1p19q共缺失状态时,AUC仅为0.703,表明可能存在过拟合。另一方面,BNB模型在测试集和验证集中表现出强大的泛化能力,预测IDH突变状态和1p19q共缺失状态的AUC值分别为0.8292和0.8106,表明具有较高的准确性、敏感性和特异性。LR模型在测试集和验证集中预测IDH突变状态时也表现出良好的性能,AUC分别为0.7845和0.8674,尽管在预测1p19q共缺失状态时略逊于BNB模型。总之,将VASARI MRI特征与机器学习技术相结合,有望对胶质瘤分子标志物进行无创预测,这可为胶质瘤患者的治疗策略提供指导并改善预后。尽管如此,仍需要进一步优化和验证模型,以提高其临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验