Suppr超能文献

人工智能在心理健康领域的伦理权衡。

Ethical trade-offs in AI for mental health.

作者信息

Holm Sune

机构信息

Department of Food and Resource Economics, University of Copenhagen, Frederiksberg, Denmark.

出版信息

Front Psychiatry. 2024 Aug 29;15:1407562. doi: 10.3389/fpsyt.2024.1407562. eCollection 2024.

Abstract

It is expected that machine learning algorithms will enable better diagnosis, prognosis, and treatment in psychiatry. A central argument for deploying algorithmic methods in clinical decision-making in psychiatry is that they may enable not only faster and more accurate clinical judgments but also that they may provide a more objective foundation for clinical decisions. This article argues that the outputs of algorithms are never objective in the sense of being unaffected by human values and possibly biased choices. And it suggests that the best way to approach this is to ensure awareness of and transparency about the ethical trade-offs that must be made when developing an algorithm for mental health.

摘要

预计机器学习算法将在精神病学中实现更好的诊断、预后和治疗。在精神病学临床决策中采用算法方法的一个核心论点是,它们不仅可以实现更快、更准确的临床判断,还可以为临床决策提供更客观的基础。本文认为,算法的输出在不受人类价值观和可能存在的偏见选择影响的意义上绝不是客观的。并且它表明,处理这个问题的最佳方法是确保在开发心理健康算法时,对必须做出的伦理权衡有认识并保持透明。

相似文献

1
Ethical trade-offs in AI for mental health.
Front Psychiatry. 2024 Aug 29;15:1407562. doi: 10.3389/fpsyt.2024.1407562. eCollection 2024.
3
Explainable AI for Bioinformatics: Methods, Tools and Applications.
Brief Bioinform. 2023 Sep 20;24(5). doi: 10.1093/bib/bbad236.
6
Fairness of artificial intelligence in healthcare: review and recommendations.
Jpn J Radiol. 2024 Jan;42(1):3-15. doi: 10.1007/s11604-023-01474-3. Epub 2023 Aug 4.
7
On the ethics of algorithmic decision-making in healthcare.
J Med Ethics. 2020 Mar;46(3):205-211. doi: 10.1136/medethics-2019-105586. Epub 2019 Nov 20.
8
Call for the responsible artificial intelligence in the healthcare.
BMJ Health Care Inform. 2023 Dec 21;30(1):e100920. doi: 10.1136/bmjhci-2023-100920.
9
Explainability in medicine in an era of AI-based clinical decision support systems.
Front Genet. 2022 Sep 19;13:903600. doi: 10.3389/fgene.2022.903600. eCollection 2022.
10
An empirical characterization of fair machine learning for clinical risk prediction.
J Biomed Inform. 2021 Jan;113:103621. doi: 10.1016/j.jbi.2020.103621. Epub 2020 Nov 18.

本文引用的文献

1
Challenges for Artificial Intelligence in Recognizing Mental Disorders.
Diagnostics (Basel). 2022 Dec 20;13(1):2. doi: 10.3390/diagnostics13010002.
3
A clarification of the nuances in the fairness metrics landscape.
Sci Rep. 2022 Mar 10;12(1):4209. doi: 10.1038/s41598-022-07939-1.
4
Towards personalised predictive psychiatry in clinical practice: an ethical perspective.
Br J Psychiatry. 2022 Apr;220(4):172-174. doi: 10.1192/bjp.2022.37.
5
Artificial intelligence in pulmonary medicine: computer vision, predictive model and COVID-19.
Eur Respir Rev. 2020 Oct 1;29(157). doi: 10.1183/16000617.0181-2020. Print 2020 Sep 30.
6
The benefit of foresight? An ethical evaluation of predictive testing for psychosis in clinical practice.
Neuroimage Clin. 2020;26:102228. doi: 10.1016/j.nicl.2020.102228. Epub 2020 Feb 25.
7
Artificial Intelligence for Mental Health and Mental Illnesses: an Overview.
Curr Psychiatry Rep. 2019 Nov 7;21(11):116. doi: 10.1007/s11920-019-1094-0.
8
Dissecting racial bias in an algorithm used to manage the health of populations.
Science. 2019 Oct 25;366(6464):447-453. doi: 10.1126/science.aax2342.
9
Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices.
NPJ Digit Med. 2018 Aug 28;1:39. doi: 10.1038/s41746-018-0040-6. eCollection 2018.
10
Machine learning in major depression: From classification to treatment outcome prediction.
CNS Neurosci Ther. 2018 Nov;24(11):1037-1052. doi: 10.1111/cns.13048. Epub 2018 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验