Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
Advanced Center for Chronic Diseases (ACCDiS), Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453, Chile.
Int J Mol Sci. 2024 Aug 30;25(17):9454. doi: 10.3390/ijms25179454.
Astrogliosis is a process by which astrocytes, when exposed to inflammation, exhibit hypertrophy, motility, and elevated expression of reactivity markers such as Glial Fibrillar Acidic Protein, Vimentin, and Connexin43. Since 1999, our laboratory in Chile has been studying molecular signaling pathways associated with "gliosis" and has reported that reactive astrocytes upregulate Syndecan 4 and αβ Integrin, which are receptors for the neuronal glycoprotein Thy-1. Thy-1 engagement stimulates adhesion and migration of reactive astrocytes and induces neurons to retract neurites, thus hindering neuronal network repair. Reportedly, we have used DITNC1 astrocytes and neuron-like CAD cells to study signaling mechanisms activated by the Syndecan 4-αβ Integrin/Thy-1 interaction. Importantly, the sole overexpression of β Integrin in non-reactive astrocytes turns them into reactive cells. In vitro, extensive passaging is a simile for "aging", and aged fibroblasts have shown β Integrin upregulation. However, it is not known if astrocytes upregulate β Integrin after successive cell passages. Here, we hypothesized that astrocytes undergoing long-term passaging increase β Integrin expression levels and behave as reactive astrocytes without needing pro-inflammatory stimuli. We used DITNC1 cells with different passage numbers to study reactivity markers using immunoblots, immunofluorescence, and astrocyte adhesion/migration assays. We also evaluated β Integrin levels by immunoblot and flow cytometry, as well as the neurotoxic effects of reactive astrocytes. Serial cell passaging mimicked the effects of inflammatory stimuli, inducing astrocyte reactivity. Indeed, in response to Thy-1, β Integrin levels, as well as cell adhesion and migration, gradually increased with multiple passages. Importantly, these long-lived astrocytes expressed and secreted factors that inhibited neurite outgrowth and caused neuronal death, just like reactive astrocytes in culture. Therefore, we describe two DITNC1 cell types: a non-reactive type that can be activated with Tumor Necrosis Factor (TNF) and another one that exhibits reactive astrocyte features even in the absence of TNF treatment. Our results emphasize the importance of passage numbers in cell behavior. Likewise, we compare the pro-inflammatory stimulus versus long-term in-plate passaging of cell cultures and introduce them as astrocyte models to study the reactivity process.
星形胶质细胞增生是一种过程,当星形胶质细胞暴露于炎症时,会表现出肥大、运动性和反应性标志物的表达升高,如神经胶质纤维酸性蛋白、波形蛋白和连接蛋白 43。自 1999 年以来,我们智利的实验室一直在研究与“胶质增生”相关的分子信号通路,并报告说反应性星形胶质细胞上调 Syndecan 4 和αβ整合素,这是神经元糖蛋白 Thy-1 的受体。Thy-1 的结合刺激反应性星形胶质细胞的黏附和迁移,并诱导神经元缩回神经突,从而阻碍神经元网络修复。据报道,我们使用 DITNC1 星形胶质细胞和类神经元 CAD 细胞来研究 Syndecan 4-αβ整合素/Thy-1 相互作用激活的信号机制。重要的是,非反应性星形胶质细胞中β整合素的单独过表达会使它们变成反应性细胞。在体外,广泛传代类似于“衰老”,衰老的成纤维细胞显示出β整合素的上调。然而,目前尚不清楚星形胶质细胞在连续细胞传代后是否会上调β整合素。在这里,我们假设经历长期传代的星形胶质细胞会增加β整合素的表达水平,并表现出反应性星形胶质细胞的特征,而无需促炎刺激。我们使用具有不同传代数的 DITNC1 细胞通过免疫印迹、免疫荧光和星形胶质细胞黏附和迁移实验来研究反应性标志物。我们还通过免疫印迹和流式细胞术评估了β整合素水平,以及反应性星形胶质细胞的神经毒性作用。连续的细胞传代模拟了炎症刺激的作用,诱导了星形胶质细胞的反应性。事实上,在 Thy-1 存在的情况下,β整合素水平以及细胞黏附和迁移随着多次传代逐渐增加。重要的是,这些长寿命的星形胶质细胞表达和分泌了抑制神经突生长并导致神经元死亡的因子,就像培养中的反应性星形胶质细胞一样。因此,我们描述了两种 DITNC1 细胞类型:一种是非反应性的,可以被肿瘤坏死因子(TNF)激活,另一种即使没有 TNF 处理也表现出反应性星形胶质细胞的特征。我们的结果强调了传代次数对细胞行为的重要性。同样,我们将促炎刺激与细胞培养的长期板内传代进行比较,并将其引入作为研究反应性过程的星形胶质细胞模型。