腐殖酸改性水铁矿对锑(V)的吸附与分配:对环境修复及转化过程的洞察
Antimony(V) Adsorption and Partitioning by Humic Acid-Modified Ferrihydrite: Insights into Environmental Remediation and Transformation Processes.
作者信息
Ding Wei, Bao Shenxu, Zhang Yimin, Chen Bo, Wang Zhanhao
机构信息
Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
出版信息
Materials (Basel). 2024 Aug 23;17(17):4172. doi: 10.3390/ma17174172.
Antimony (Sb) migration in soil and water systems is predominantly governed by its adsorption onto ferrihydrite (FH), a process strongly influenced by natural organic matter. This study investigates the adsorption behavior, stability, and mechanism of FH and FH-humic acid (FH-HA) complexes on Sb(V), along with the fate of adsorbed Sb(V) during FH aging. Batch adsorption experiments reveal that initial pH and concentration significantly influence Sb(V) sorption. Lower pH levels decrease adsorption, while higher concentrations enhance it. Sb(V) adsorption increases with prolonged contact time, with FH exhibiting a higher adsorption capacity than FH-HA complexes. Incorporating HA onto FH surfaces reduces reactive adsorption sites, decreasing Sb(V) adsorption. Adsorbed FH-HA complexes exhibit a higher specific surface area than co-precipitated FH-HA, demonstrating stronger Sb(V) adsorption capacity under various conditions. X-ray photoelectron spectroscopy (XPS) confirms that Sb(V) adsorption primarily occurs through ligand exchange, forming Fe-O-Sb complexes. HA inhibits the migration of Sb(V), thereby enhancing its retention within the FH and FH-HA complexes. During FH transformation, a portion of Sb(V) may replace Fe(III) within converted iron minerals. However, the combination of relatively high adsorption capacity and significantly lower desorption rates makes adsorbed FH-HA complexes promising candidates for sustained Sb adsorption over extended periods. These findings enhance our understanding of Sb(V) behavior and offer insights for effective remediation strategies in complex environmental systems.
锑(Sb)在土壤和水系统中的迁移主要受其在水铁矿(FH)上的吸附作用控制,这一过程受天然有机物的影响很大。本研究考察了FH和FH-腐殖酸(FH-HA)络合物对Sb(V)的吸附行为、稳定性和机制,以及FH老化过程中吸附态Sb(V)的归宿。批量吸附实验表明,初始pH值和浓度对Sb(V)的吸附有显著影响。较低的pH值会降低吸附,而较高的浓度则会增强吸附。Sb(V)的吸附量随接触时间延长而增加,FH对Sb(V)的吸附能力高于FH-HA络合物。将HA引入FH表面会减少活性吸附位点,从而降低Sb(V)的吸附量。吸附的FH-HA络合物比共沉淀的FH-HA具有更高的比表面积,表明在各种条件下具有更强的Sb(V)吸附能力。X射线光电子能谱(XPS)证实,Sb(V)的吸附主要通过配体交换发生,形成Fe-O-Sb络合物。HA抑制了Sb(V)的迁移,从而增强了其在FH和FH-HA络合物中的保留。在FH转化过程中,一部分Sb(V)可能会取代转化后的铁矿物中的Fe(III)。然而,相对较高的吸附容量和显著较低的解吸速率相结合,使得吸附的FH-HA络合物有望在较长时间内持续吸附Sb。这些发现增进了我们对Sb(V)行为的理解,并为复杂环境系统中的有效修复策略提供了见解。