Zouhri Khalid, Mohamed Mohamed, Erol Anil, Liu Bert, Appiah-Kubi Philip
Department of Engineering Management, Systems & Technology, University of Dayton, 300 College Park, Kettering Lab 241M, Dayton, OH 45469, USA.
Department of Mechanical Engineering, University of Dayton, 300 College Park, Kettering Lab 241M, Dayton, OH 45469, USA.
Materials (Basel). 2024 Aug 29;17(17):4280. doi: 10.3390/ma17174280.
This study explores the development and performance of bistable materials, emphasizing their potential applications in aero-vehicles and high-stress environments. By integrating soft and hard materials within a composite structure, the research demonstrates the creation of bistable composites that exhibit remarkable flexibility and rigidity. Advanced simulations using COMSOL Multiphysics and 3D-printed prototypes reveal that these materials effectively absorb and dissipate stress, maintaining structural integrity under high-pressure conditions. Compression tests highlight the ability of bistable structures to bear significant loads, distributing stress efficiently across multiple layers. The innovative proposal of combining stiff and flexible materials within a single unit cell enhances bistable behavior, offering superior energy absorption and resilience. This work underscores the promise of bistable materials in advancing materials science, providing robust solutions for aerospace, automotive, and protective gear applications and paving the way for future research in optimizing bistable structures for diverse engineering challenges.
本研究探讨了双稳态材料的发展与性能,着重强调了它们在航空飞行器和高应力环境中的潜在应用。通过在复合结构中整合软质材料和硬质材料,该研究证明了双稳态复合材料的创建,这些复合材料展现出显著的柔韧性和刚性。使用COMSOL Multiphysics进行的先进模拟以及3D打印原型表明,这些材料能有效吸收和消散应力,在高压条件下保持结构完整性。压缩测试突出了双稳态结构承受巨大载荷的能力,能在多个层面上有效地分散应力。在单个晶胞内结合刚性和柔性材料的创新提议增强了双稳态行为,提供了卓越的能量吸收能力和恢复力。这项工作强调了双稳态材料在推动材料科学发展方面的前景,为航空航天、汽车和防护装备应用提供了强大的解决方案,并为未来针对各种工程挑战优化双稳态结构的研究铺平了道路。