Suppr超能文献

基于皮克林乳液的胶囊制备的超声控制

Ultrasound Control of Pickering Emulsion-Based Capsule Preparation.

作者信息

Ratajczak Filip, Jameel Bassam, Bielas Rafał, Józefczak Arkadiusz

机构信息

Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.

出版信息

Sensors (Basel). 2024 Sep 2;24(17):5710. doi: 10.3390/s24175710.

Abstract

Capsules with microparticle shells became of great interest due to their potential in many fields. Those capsules can be fabricated at high temperatures from particle-stabilized emulsions (Pickering emulsions) by sintering together particles that cover droplets. One of the problems with such an approach is accurately controlling whether particles are already sintered and creating the rigid capsule shell of a capsule. Here, we propose using a non-destructive ultrasound method for monitoring Pickering emulsion-based capsules prepared using heating under an alternating magnetic field. The polyethylene microparticles that were responsive to temperatures higher than 112 °C were used as droplet stabilizers together with iron oxide nanoparticles. During the coalescence of the droplets, facilitated by an external electric field, the ultrasonic attenuation increased, giving evidence that the ultrasound method detects structural changes in Pickering emulsions. The main change was the difference in the droplets' size, which was also observed via optical microscopy. The attenuation of ultrasound increased even more when measured after magnetic heating for the same concentration of particle stabilizers. Simultaneously, the values of ultrasonic velocity did not exhibit similar variety. The results show that the values of the attenuation coefficient can be used for a quantitative evaluation of the capsule formation process.

摘要

具有微粒壳的胶囊因其在许多领域的潜力而备受关注。这些胶囊可以在高温下由颗粒稳定乳液(皮克林乳液)通过烧结覆盖液滴的颗粒来制备。这种方法的问题之一是精确控制颗粒是否已经烧结以及形成胶囊的刚性胶囊壳。在这里,我们提出使用一种无损超声方法来监测在交变磁场下加热制备的基于皮克林乳液的胶囊。对高于112°C的温度有响应的聚乙烯微粒与氧化铁纳米颗粒一起用作液滴稳定剂。在外部电场促进液滴聚结的过程中,超声衰减增加,这表明超声方法检测到了皮克林乳液中的结构变化。主要变化是液滴尺寸的差异,这也通过光学显微镜观察到。对于相同浓度的颗粒稳定剂,在磁加热后测量时,超声衰减增加得更多。同时,超声速度值没有表现出类似的变化。结果表明,衰减系数值可用于胶囊形成过程的定量评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ed7/11398209/e75005a4b88a/sensors-24-05710-g005.jpg

相似文献

1
Ultrasound Control of Pickering Emulsion-Based Capsule Preparation.
Sensors (Basel). 2024 Sep 2;24(17):5710. doi: 10.3390/s24175710.
2
The potential of magnetic heating for fabricating Pickering-emulsion-based capsules.
Colloids Surf B Biointerfaces. 2020 Aug;192:111070. doi: 10.1016/j.colsurfb.2020.111070. Epub 2020 Apr 22.
3
The Effect of Particle Shell on Cooling Rates in Oil-in-Oil Magnetic Pickering Emulsions.
Materials (Basel). 2020 Oct 26;13(21):4783. doi: 10.3390/ma13214783.
5
Stabilization of Pickering emulsion using tragacanth nanoparticles produced by a combination of ultrasonic and anti-solvent methods.
J Sci Food Agric. 2022 Mar 15;102(4):1353-1362. doi: 10.1002/jsfa.11467. Epub 2021 Aug 24.
6
Controlled assembly of superparamagnetic iron oxide nanoparticle into nanoliposome for Pickering emulsion preparation.
Colloids Surf B Biointerfaces. 2024 Sep;241:114051. doi: 10.1016/j.colsurfb.2024.114051. Epub 2024 Jun 21.
7
Fabrication and characterization of Pickering emulsion gels stabilized by zein/pullulan complex colloidal particles.
J Sci Food Agric. 2021 Jul;101(9):3630-3643. doi: 10.1002/jsfa.10992. Epub 2020 Dec 22.
8
Optimization of ultrasound heating with Pickering droplets using core-shell scattering theory.
Ultrason Sonochem. 2024 Oct;109:106965. doi: 10.1016/j.ultsonch.2024.106965. Epub 2024 Jul 2.
9
Impact of ultrasound process on cassava starch nanoparticles and Pickering emulsions stability.
Food Res Int. 2024 Sep;192:114810. doi: 10.1016/j.foodres.2024.114810. Epub 2024 Jul 22.
10
Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions.
J Agric Food Chem. 2013 Sep 18;61(37):8888-98. doi: 10.1021/jf401859y. Epub 2013 Sep 6.

本文引用的文献

2
Viscoelastic ECAH: Scattering analysis of spherical particles in suspension with viscoelasticity.
Ultrasonics. 2021 Aug;115:106463. doi: 10.1016/j.ultras.2021.106463. Epub 2021 May 24.
3
Comparison of Virosome vs. Liposome as drug delivery vehicle using HepG2 and CaCo2 cell lines.
J Microencapsul. 2021 Aug;38(5):263-275. doi: 10.1080/02652048.2021.1902009. Epub 2021 Mar 25.
4
Formulation of polyphthalaldehyde microcapsules for immediate UV-light triggered release.
J Colloid Interface Sci. 2020 Nov 1;579:645-653. doi: 10.1016/j.jcis.2020.06.024. Epub 2020 Jun 23.
5
The potential of magnetic heating for fabricating Pickering-emulsion-based capsules.
Colloids Surf B Biointerfaces. 2020 Aug;192:111070. doi: 10.1016/j.colsurfb.2020.111070. Epub 2020 Apr 22.
6
Colloidal Capsules Assembled from Gold Nanoparticles Using Small-Molecule Hydrophobic Cross-linkers.
Langmuir. 2019 Dec 31;35(52):17037-17045. doi: 10.1021/acs.langmuir.9b01903. Epub 2019 Dec 19.
8
Ultrasound-triggered release from metal shell microcapsules.
J Colloid Interface Sci. 2019 Oct 15;554:444-452. doi: 10.1016/j.jcis.2019.07.020. Epub 2019 Jul 8.
9
The application of frequency-domain photoacoustics to temperature-dependent measurements of the Grüneisen parameter in lipids.
Photoacoustics. 2018 Aug 3;11:56-64. doi: 10.1016/j.pacs.2018.07.005. eCollection 2018 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验