Jannasch Anett, Tulok Silke, Okafornta Chukwuebuka William, Kugel Thomas, Bortolomeazzi Michele, Boissonnet Tom, Schmidt Christian, Vogelsang Andy, Dittfeld Claudia, Tugtekin Sems-Malte, Matschke Klaus, Paliulis Leocadia, Thomas Carola, Lindemann Dirk, Fabig Gunar, Müller-Reichert Thomas
Department of Cardiac Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Heart Centre Dresden, Technische Universität Dresden, Dresden, Germany.
Core Facility Cellular Imaging, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
J Microsc. 2025 Jan;297(1):105-119. doi: 10.1111/jmi.13360. Epub 2024 Sep 14.
Modern bioimaging core facilities at research institutions are essential for managing and maintaining high-end instruments, providing training and support for researchers in experimental design, image acquisition and data analysis. An important task for these facilities is the professional management of complex multidimensional bioimaging data, which are often produced in large quantity and very different file formats. This article details the process that led to successfully implementing the OME Remote Objects system (OMERO) for bioimage-specific research data management (RDM) at the Core Facility Cellular Imaging (CFCI) at the Technische Universität Dresden (TU Dresden). Ensuring compliance with the FAIR (findable, accessible, interoperable, reusable) principles, we outline here the challenges that we faced in adapting data handling and storage to a new RDM system. These challenges included the introduction of a standardised group-specific naming convention, metadata curation with tagging and Key-Value pairs, and integration of existing image processing workflows. By sharing our experiences, this article aims to provide insights and recommendations for both individual researchers and educational institutions intending to implement OMERO as a management system for bioimaging data. We showcase how tailored decisions and structured approaches lead to successful outcomes in RDM practices. Lay description: Modern bioimaging facilities at research institutions are crucial for managing advanced equipment and supporting scientists in their research. These facilities help with designing experiments, capturing images, and analyzing data. One of their key tasks is organizing and managing large amounts of complex image data, which often comes in various file formats and are difficult to handle. This article explains how the Core Facility Cellular Imaging (CFCI) at Technische Universität Dresden successfully implemented a specialized system called OMERO. With this system it is possible to manage and organize bioimaging data sustainably in a way that they are findable, accessible, interoperable and reusable according the FAIR principles. We describe the practical implementation process on exemplary projects within scientific research and medical education. We discuss the challenges we faced, such as creating a standard way to name files, organizing important information about the images (known as metadata), and ensuring that existing image processing methods could work with the new system. By sharing our experience, we aim to offer practical advice and recommendations for other researchers and institutions interested in using OMERO for managing their bioimaging data. We highlight how careful planning and structured approaches can lead to successful data management practices, making it easier for researchers to store, access, and reuse their valuable data.
研究机构的现代生物成像核心设施对于管理和维护高端仪器、为研究人员提供实验设计、图像采集和数据分析方面的培训与支持至关重要。这些设施的一项重要任务是对复杂的多维生物成像数据进行专业管理,这些数据通常大量产生且文件格式差异很大。本文详细介绍了德累斯顿工业大学(TU Dresden)细胞成像核心设施(CFCI)成功实施用于生物图像特定研究数据管理(RDM)的OME远程对象系统(OMERO)的过程。为确保符合FAIR(可查找、可访问、可互操作、可重用)原则,我们在此概述了在使数据处理和存储适应新的RDM系统时所面临的挑战。这些挑战包括引入标准化的特定组命名约定、使用标签和键值对进行元数据管理以及集成现有的图像处理工作流程。通过分享我们的经验,本文旨在为有意将OMERO用作生物成像数据管理系统的个体研究人员和教育机构提供见解和建议。我们展示了如何通过量身定制的决策和结构化方法在RDM实践中取得成功。通俗描述:研究机构的现代生物成像设施对于管理先进设备和支持科学家开展研究至关重要。这些设施有助于设计实验、采集图像和分析数据。其关键任务之一是组织和管理大量复杂的图像数据,这些数据通常格式多样且难以处理。本文解释了德累斯顿工业大学的细胞成像核心设施(CFCI)如何成功实施一个名为OMERO的专门系统。借助该系统,可以按照FAIR原则以可持续的方式管理和组织生物成像数据,使其可查找、可访问、可互操作且可重用。我们描述了在科研和医学教育中的典型项目上的实际实施过程。我们讨论了所面临的挑战,例如创建文件命名的标准方式、整理有关图像的重要信息(即元数据)以及确保现有的图像处理方法能够与新系统兼容。通过分享我们的经验,我们旨在为其他有兴趣使用OMERO管理其生物成像数据的研究人员和机构提供实用建议和推荐。我们强调精心规划和结构化方法如何能够带来成功的数据管理实践,使研究人员更易于存储、访问和重用其宝贵数据。