Suppr超能文献

基于结构稀疏性的中等粒度核元素剪枝。

Intermediate-grained kernel elements pruning with structured sparsity.

机构信息

School of Computer Science and Technology, Xidian University, No. 2 South Taibai Road, Xi'an, 710071, PR China.

出版信息

Neural Netw. 2024 Dec;180:106708. doi: 10.1016/j.neunet.2024.106708. Epub 2024 Sep 7.

Abstract

Neural network pruning provides a promising prospect for the deployment of neural networks on embedded or mobile devices with limited resources. Although current structured strategies are unconstrained by specific hardware architecture in the phase of forward inference, the decline in classification accuracy of structured methods is beyond the tolerance at the level of general pruning rate. This inspires us to develop a technique that satisfies high pruning rate with a small decline in accuracy and has the general nature of structured pruning. In this paper, we propose a new pruning method, namely KEP (Kernel Elements Pruning), to compress deep convolutional neural networks by exploring the significance of elements in each kernel plane and removing unimportant elements. In this method, we apply a controllable regularization penalty to constrain unimportant elements by adding a prior knowledge mask and obtain a compact model. In the calculation procedure of forward inference, we introduce a sparse convolution operation which is different from the sliding window to eliminate invalid zero calculations and verify the effectiveness of the operation for further deployment on FPGA. A massive variety of experiments demonstrate the effectiveness of KEP on two datasets: CIFAR-10 and ImageNet. Specially, with few indexes of non-zero weights introduced, KEP has a significant improvement over the latest structured methods in terms of parameter and float-point operation (FLOPs) reduction, and performs well on large datasets.

摘要

神经网络剪枝为在资源有限的嵌入式或移动设备上部署神经网络提供了广阔的前景。虽然目前的结构化策略在正向推理阶段不受特定硬件架构的限制,但结构化方法的分类精度下降超出了一般剪枝率水平的容忍度。这启发我们开发一种技术,在保持高精度的同时满足高剪枝率,并具有结构化剪枝的通用性。在本文中,我们提出了一种新的剪枝方法,即 KEP(核元素剪枝),通过探索每个核平面中元素的重要性并去除不重要的元素来压缩深度卷积神经网络。在这种方法中,我们通过添加先验知识掩码来应用可控制的正则化惩罚来约束不重要的元素,并获得一个紧凑的模型。在正向推理的计算过程中,我们引入了一种稀疏卷积操作,与滑动窗口不同,以消除无效的零计算,并验证了该操作在进一步部署到 FPGA 上的有效性。大量的实验证明了 KEP 在两个数据集(CIFAR-10 和 ImageNet)上的有效性。特别地,通过引入少量的非零权重指标,KEP 在参数和浮点运算(FLOPs)减少方面比最新的结构化方法有显著的改进,并且在大型数据集上表现良好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验