Patova Olga A, Kosolapova Nadegda V, Golovchenko Victoria V
Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia.
Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia.
Int J Biol Macromol. 2024 Sep 13;280(Pt 1):135633. doi: 10.1016/j.ijbiomac.2024.135633.
The semi-solid Ca-gels were prepared from low-methoxyl pectins (methoxylation degree DM 4-36 %) of Oberna behen, Potamogeton natans, Tanacetum vulgare, Comarum palustre, Bergenia crassifolia, and Heracleum sosnowskyi. Pectins are characterized by Mw of 77-556 kDa and different content of HG and RG-I. The gels were prepared by addition of Ca ions at varying stoichiometric ratios, R = 2 × [Ca]/[COO], of 0.2-0.6, and a fixed pectin concentration of 10 g/L. It was shown that the presence of certain sets of structural characteristics in low-methoxyl pectins from different sources leads to the formation of gels with similar rheological properties. Pectins with Mw 77-98 kDa, DM 6-14 % form stiffer Ca-gels than pectins with Mw 218-253 kDa, DM 24-36 % at the same R. Pectins with Mw 346-556 kDa form the strongest Ca-gels. Their high Mw compensates for the influence of DM on the properties of Ca-gels. The stability of gels in PBS (pH 7.4) is determined mainly by proportion of 1,4-linked non-methoxylated GalA in pectins. Pectins with DM 4-14 % form more stable Ca-gels in PBS than pectins with DM 21-36 %.