Zobeck Mark, Khan Javed, Venkatramani Rajkumar, Okcu M Fatih, Scheurer Michael E, Lupo Philip J
Baylor College of Medicine, Department of Pediatrics, Division of Hematology/Oncology, Houston, Texas.
Texas Children's Hospital, Texas Children's Cancer and Hematology Centers, Houston, Texas.
medRxiv. 2024 Sep 5:2024.09.04.24313032. doi: 10.1101/2024.09.04.24313032.
Molecular markers, such as fusion genes and and mutations, increasingly influence risk-stratified treatment selection for pediatric rhabdomyosarcoma (RMS). This study aims to integrate molecular and clinical data to produce individualized prognosis predictions that can further improve treatment selection.
Clinical variables and somatic mutation data for 20 genes from 641 RMS patients in the United Kingdom and the United States were used to develop three Cox proportional hazard models for predicting event-free survival (EFS). The 'Baseline Clinical' (BC) model included treatment location, age, fusion status, and risk group. The 'Gene Enhanced 2' (GE2) model added and mutations to the BC predictors. The 'Gene Enhanced 6' (GE6) model further included , , , and mutations, selected through LASSO regression. Model performance was assessed using likelihood ratio (LR) tests and optimism-adjusted, bootstrapped validation and calibration metrics.
The GE6 model demonstrated superior predictive performance, offering 39% more predictive information than the BC model (LR p<0.001) and 15% more than the GE2 model (LR p<0.001). The GE6 model achieved the highest discrimination with a C-index of 0.7087, a Nagalkerke R of 0.205, and appropriate calibration. Mutations in , , , , and were associated with higher hazards, while NF1 mutation correlated with lower hazard. Individual prognosis predictions varied between models in ways that may suggest different treatments for the same patient. For example, the 5-year EFS for a 10-year-old patient with high-risk, fusion-negative, -positive disease was 50.0% (95% confidence interval: 39-64%) from BC but 76% (64-90%) from GE6.
Incorporating molecular markers into RMS prognosis models improves prognosis predictions. Individualized prognosis predictions may suggest alternative treatment regimens compared to traditional risk-classification schemas. Improved clinical variables and external validation are required prior to implementing these models into clinical practice.
分子标志物,如融合基因和突变,对小儿横纹肌肉瘤(RMS)的风险分层治疗选择的影响日益增大。本研究旨在整合分子和临床数据,以生成个性化的预后预测,从而进一步改善治疗选择。
利用来自英国和美国的641例RMS患者的临床变量和20个基因的体细胞突变数据,开发了三个用于预测无事件生存期(EFS)的Cox比例风险模型。“基线临床”(BC)模型包括治疗地点、年龄、融合状态和风险组。“基因增强2”(GE2)模型在BC预测因子的基础上增加了 和 突变。“基因增强6”(GE6)模型进一步纳入了通过LASSO回归选择的 、 、 和 突变。使用似然比(LR)检验以及经乐观度调整的自抽样验证和校准指标对模型性能进行评估。
GE6模型显示出卓越的预测性能,比BC模型提供的预测信息多39%(LR p<0.001),比GE2模型多15%(LR p<0.001)。GE6模型实现了最高的区分度,C指数为0.7087,Nagalkerke R为0.205,且校准适当。 、 、 、 和 的突变与较高风险相关,而NF1突变与较低风险相关。不同模型之间的个体预后预测有所不同,这可能意味着对同一患者采用不同的治疗方法。例如,一名10岁的高危、融合阴性、 阳性疾病患者的5年EFS,BC模型预测为50.0%(95%置信区间:39 - 64%),而GE6模型预测为76%(64 - 90%)。
将分子标志物纳入RMS预后模型可改善预后预测。与传统风险分类方案相比,个性化预后预测可能提示替代治疗方案。在将这些模型应用于临床实践之前,需要改进临床变量并进行外部验证。