Xue Hong, Mishra Manoj K, Liu Yong, Liu Pengyuan, Grzybowski Michael, Pandey Rajan, Usa Kristie, Vanden Avond Mark A, Bala Niharika, Alli Abdel A, Cowley Allen W, Qiu Qiongzi, Greene Andrew S, Rao Sridhar, O'Meara Caitlin C, Geurts Aron M, Liang Mingyu
bioRxiv. 2024 May 18:2024.05.15.594413. doi: 10.1101/2024.05.15.594413.
Most common sequence variants associated with human traits are in noncoding regions of the genome, form haplotypes with other noncoding variants, and exhibit small effect sizes in the general population. Determining the physiological roles and mechanisms of action for these noncoding variants, particularly large haplotypes containing multiple variants, is both critical and challenging. To address this challenge, we developed an approach that integrates physiological studies in genetically engineered and phenotypically permissive animal models, precise editing of large haplotypes in human induced pluripotent stem cells (hiPSCs), and targeted chromatin conformation analysis. We applied this approach to examine the blood pressure associated rs1173771 locus, which includes a haplotype containing 11 single nucleotide polymorphisms (SNPs) spanning 17.4 kbp. Deleting the orthologous noncoding region in the genome of the Dahl salt-sensitive rat attenuated the salt-induced increase in systolic blood pressure by nearly 10 mmHg. This attenuation of hypertension appeared to be mediated by upregulation of the adjacent gene (natriuretic peptide receptor 3) in arteries, enhancing vasodilation. The blood pressure-elevating and -lowering haplotypes were precisely reconstituted in hiPSCs using an efficient, two-step genome editing technique. The blood pressure-elevating haplotype decreased NPR3 expression in endothelial cells and vascular smooth muscle cells derived from the edited, isogenic hiPSCs. The influence of the haplotype was partially recapitulated by the sentinel SNP rs1173771. Additionally, the blood pressure-elevating haplotype showed significantly greater chromatin interactions with the promoter region. This study illustrates the feasibility of ascertaining the physiological roles and mechanisms of action for large noncoding haplotypes. Our efficient, integrated, and targeted approach can be applied to investigate other noncoding variants.
与人类性状相关的最常见序列变异存在于基因组的非编码区域,与其他非编码变异形成单倍型,并在普通人群中表现出较小的效应大小。确定这些非编码变异,特别是包含多个变异的大的单倍型的生理作用和作用机制,既至关重要又具有挑战性。为应对这一挑战,我们开发了一种方法,该方法整合了在基因工程和表型允许的动物模型中的生理学研究、人类诱导多能干细胞(hiPSC)中大型单倍型的精确编辑以及靶向染色质构象分析。我们应用这种方法来研究与血压相关的rs1173771位点,该位点包含一个单倍型,其中有11个单核苷酸多态性(SNP),跨度为17.4 kbp。删除Dahl盐敏感大鼠基因组中的直系同源非编码区域可使盐诱导的收缩压升高降低近10 mmHg。这种高血压的减轻似乎是由动脉中相邻基因(利钠肽受体3)的上调介导的,从而增强了血管舒张。使用高效的两步基因组编辑技术在hiPSC中精确重建了升高血压和降低血压的单倍型。升高血压的单倍型降低了源自编辑后的同基因hiPSC的内皮细胞和血管平滑肌细胞中NPR3的表达。单倍型的影响部分由哨兵SNP rs1173771概括。此外,升高血压的单倍型与启动子区域显示出明显更强的染色质相互作用。这项研究说明了确定大型非编码单倍型的生理作用和作用机制的可行性。我们高效、综合且有针对性的方法可用于研究其他非编码变异。