Zufiría Mónica, Pikatza-Menoio Oihane, Garciandia-Arcelus Maddi, Bengoetxea Xabier, Jiménez Andrés, Elicegui Amaia, Levchuk María, Arnold-García Olatz, Ondaro Jon, Iruzubieta Pablo, Rodríguez-Gómez Laura, Fernández-Pelayo Uxoa, Muñoz-Oreja Mikel, Aiastui Ana, García-Verdugo José Manuel, Herranz-Pérez Vicente, Zulaica Miren, Poza Juan José, Ruiz-Onandi Rebeca, Fernández-Torrón Roberto, Espinal Juan Bautista, Bonilla Mario, Lersundi Ana, Fernández-Eulate Gorka, Riancho Javier, Vallejo-Illarramendi Ainara, Holt Ian James, Sáenz Amets, Malfatti Edoardo, Duguez Stéphanie, Blázquez Lorea, López de Munain Adolfo, Gerenu Gorka, Gil-Bea Francisco, Alonso-Martín Sonia
Neurosciences Area, Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastian, Spain.
CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), 28031, Madrid, Spain.
Acta Neuropathol. 2024 Sep 16;148(1):43. doi: 10.1007/s00401-024-02794-y.
Amyotrophic Lateral Sclerosis (ALS) is a multisystemic neurodegenerative disorder, with accumulating evidence indicating metabolic disruptions in the skeletal muscle preceding disease symptoms, rather than them manifesting as a secondary consequence of motor neuron (MN) degeneration. Hence, energy homeostasis is deeply implicated in the complex physiopathology of ALS and skeletal muscle has emerged as a key therapeutic target. Here, we describe intrinsic abnormalities in ALS skeletal muscle, both in patient-derived muscle cells and in muscle cell lines with genetic knockdown of genes related to familial ALS, such as TARDBP (TDP-43) and FUS. We found a functional impairment of myogenesis that parallels defects of glucose oxidation in ALS muscle cells. We identified FOXO1 transcription factor as a key mediator of these metabolic and functional features in ALS muscle, via gene expression profiling and biochemical surveys in TDP-43 and FUS-silenced muscle progenitors. Strikingly, inhibition of FOXO1 mitigated the impaired myogenesis in both the genetically modified and the primary ALS myoblasts. In addition, specific in vivo conditional knockdown of TDP-43 or FUS orthologs (TBPH or caz) in Drosophila muscle precursor cells resulted in decreased innervation and profound dysfunction of motor nerve terminals and neuromuscular synapses, accompanied by motor abnormalities and reduced lifespan. Remarkably, these phenotypes were partially corrected by foxo inhibition, bolstering the potential pharmacological management of muscle intrinsic abnormalities associated with ALS. The findings demonstrate an intrinsic muscle dysfunction in ALS, which can be modulated by targeting FOXO factors, paving the way for novel therapeutic approaches that focus on the skeletal muscle as complementary target tissue.
肌萎缩侧索硬化症(ALS)是一种多系统神经退行性疾病,越来越多的证据表明,在疾病症状出现之前,骨骼肌中就存在代谢紊乱,而非这些代谢紊乱表现为运动神经元(MN)退化的继发后果。因此,能量稳态与ALS复杂的病理生理学密切相关,骨骼肌已成为关键的治疗靶点。在此,我们描述了ALS骨骼肌中的内在异常,这些异常存在于患者来源的肌肉细胞以及对与家族性ALS相关基因(如TARDBP(TDP - 43)和FUS)进行基因敲低的肌肉细胞系中。我们发现肌生成功能受损与ALS肌肉细胞中的葡萄糖氧化缺陷平行。通过对TDP - 43和FUS沉默的肌肉祖细胞进行基因表达谱分析和生化检测,我们确定FOXO1转录因子是ALS肌肉中这些代谢和功能特征的关键调节因子。令人惊讶的是,抑制FOXO1可减轻转基因ALS成肌细胞和原代ALS成肌细胞中受损的肌生成。此外,在果蝇肌肉前体细胞中特异性体内条件性敲低TDP - 43或FUS直系同源基因(TBPH或caz),会导致神经支配减少、运动神经末梢和神经肌肉突触严重功能障碍,并伴有运动异常和寿命缩短。值得注意的是,这些表型通过foxo抑制得到部分纠正,这支持了对与ALS相关的肌肉内在异常进行潜在药物治疗的可能性。这些发现证明了ALS中存在内在的肌肉功能障碍,可通过靶向FOXO因子进行调节,为以骨骼肌作为补充靶组织的新型治疗方法铺平了道路。