Shen Jinke, He Gege, Mi Hongyu, Guo Fengjiao, Jin Haiyan, Chang Xiaqing, Yan Shuo, Qiu Jieshan
School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
J Colloid Interface Sci. 2025 Jan 15;678(Pt C):111-119. doi: 10.1016/j.jcis.2024.09.087. Epub 2024 Sep 11.
Although zeolitic imidazolate frameworks (ZIFs) possess the merits of orderly porosity, high permeability, and easy functionalization, the transformation of ZIFs into the real active species and the promotion of the catalytic efficiency and stability are still challenging. Herein, CoMo-based three-dimensional (3D) hollow nanocages composed of interconnected nanosheets are fabricated by in-situ etching metal-organic framework (ZIF-67) under the aid of MoO. X-ray photoelectron spectroscopy (XPS) and in-situ Raman confirm that Mo leaching can accelerate surface reconstruction and generate CoOOH active sites after continuous oxidation. Benefiting from the nanostructure and electronic properties after surface reconstruction, the engineered CoMo-30 exhibits the lowest overpotential of 280 mV at 30 mA cm and robust stability over 110 h in 1 M KOH media for oxygen evolution reaction (OER), which significantly surpasses the other counterparts and commercial RuO. Density functional theory (DFT) calculations indicate that CoMo-30 has a lower free energy of *O → *OOH as rate determining step (RDS), suggesting that CoOOH sites play a crucial role in enhancing the activity and kinetics of OER. This work provides valuable insights into the rational design of hollow structures and the structure-composition-activity relationship during the electrochemical reaction process.
尽管沸石咪唑酯骨架材料(ZIFs)具有有序孔隙率、高渗透性和易于功能化等优点,但将ZIFs转化为真正的活性物种并提高催化效率和稳定性仍然具有挑战性。在此,通过在MoO的辅助下原位蚀刻金属有机骨架(ZIF-67)制备了由相互连接的纳米片组成的CoMo基三维(3D)中空纳米笼。X射线光电子能谱(XPS)和原位拉曼光谱证实,Mo浸出可加速表面重构,并在连续氧化后生成CoOOH活性位点。受益于表面重构后的纳米结构和电子性质,工程化的CoMo-30在1 M KOH介质中进行析氧反应(OER)时,在30 mA cm下表现出280 mV的最低过电位,并在110 h以上具有稳健的稳定性,这显著超过了其他同类材料和商业RuO。密度泛函理论(DFT)计算表明,CoMo-30在作为速率决定步骤(RDS)的*O→*OOH过程中具有较低的自由能,这表明CoOOH位点在提高OER的活性和动力学方面起着关键作用。这项工作为空心结构的合理设计以及电化学反应过程中的结构-组成-活性关系提供了有价值的见解。